These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 8756288)
1. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Conlon FL; Sedgwick SG; Weston KM; Smith JC Development; 1996 Aug; 122(8):2427-35. PubMed ID: 8756288 [TBL] [Abstract][Full Text] [Related]
2. A screen for targets of the Xenopus T-box gene Xbra. Saka Y; Tada M; Smith JC Mech Dev; 2000 May; 93(1-2):27-39. PubMed ID: 10781937 [TBL] [Abstract][Full Text] [Related]
3. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Latinkić BV; Umbhauer M; Neal KA; Lerchner W; Smith JC; Cunliffe V Genes Dev; 1997 Dec; 11(23):3265-76. PubMed ID: 9389657 [TBL] [Abstract][Full Text] [Related]
4. Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Tada M; Casey ES; Fairclough L; Smith JC Development; 1998 Oct; 125(20):3997-4006. PubMed ID: 9735361 [TBL] [Abstract][Full Text] [Related]
5. Mesoderm formation in response to Brachyury requires FGF signalling. Schulte-Merker S; Smith JC Curr Biol; 1995 Jan; 5(1):62-7. PubMed ID: 7535172 [TBL] [Abstract][Full Text] [Related]
6. Interaction of goosecoid and brachyury in Xenopus mesoderm patterning. Artinger M; Blitz I; Inoue K; Tran U; Cho KW Mech Dev; 1997 Jul; 65(1-2):187-96. PubMed ID: 9256355 [TBL] [Abstract][Full Text] [Related]
7. Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus. Latinkic BV; Smith JC Development; 1999 Apr; 126(8):1769-79. PubMed ID: 10079237 [TBL] [Abstract][Full Text] [Related]
8. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis. O'Reilly MA; Smith JC; Cunliffe V Development; 1995 May; 121(5):1351-9. PubMed ID: 7789266 [TBL] [Abstract][Full Text] [Related]
9. tbx6, a Brachyury-related gene expressed by ventral mesendodermal precursors in the zebrafish embryo. Hug B; Walter V; Grunwald DJ Dev Biol; 1997 Mar; 183(1):61-73. PubMed ID: 9119115 [TBL] [Abstract][Full Text] [Related]
10. Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Kitaguchi T; Mizugishi K; Hatayama M; Aruga J; Mikoshiba K Dev Growth Differ; 2002 Feb; 44(1):55-61. PubMed ID: 11869292 [TBL] [Abstract][Full Text] [Related]
11. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Schier AF; Neuhauss SC; Helde KA; Talbot WS; Driever W Development; 1997 Jan; 124(2):327-42. PubMed ID: 9053309 [TBL] [Abstract][Full Text] [Related]
12. Role of the Xlim-1 and Xbra genes in anteroposterior patterning of neural tissue by the head and trunk organizer. Taira M; Saint-Jeannet JP; Dawid IB Proc Natl Acad Sci U S A; 1997 Feb; 94(3):895-900. PubMed ID: 9023353 [TBL] [Abstract][Full Text] [Related]
13. Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra. Tada M; O'Reilly MA; Smith JC Development; 1997 Jun; 124(11):2225-34. PubMed ID: 9187148 [TBL] [Abstract][Full Text] [Related]
14. Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin and Xwnt-8. Cunliffe V; Smith JC EMBO J; 1994 Jan; 13(2):349-59. PubMed ID: 7906224 [TBL] [Abstract][Full Text] [Related]
15. Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Schulte-Merker S; Hammerschmidt M; Beuchle D; Cho KW; De Robertis EM; Nüsslein-Volhard C Development; 1994 Apr; 120(4):843-52. PubMed ID: 7600961 [TBL] [Abstract][Full Text] [Related]
16. Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1. Papin C; van Grunsven LA; Verschueren K; Huylebroeck D; Smith JC Mech Dev; 2002 Feb; 111(1-2):37-46. PubMed ID: 11804777 [TBL] [Abstract][Full Text] [Related]
17. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development. Cao JM; Li SQ; Zhang HW; Shi DL Mech Dev; 2012; 129(9-12):263-74. PubMed ID: 22820002 [TBL] [Abstract][Full Text] [Related]
18. Essential role of the transcription factor Ets-2 in Xenopus early development. Kawachi K; Masuyama N; Nishida E J Biol Chem; 2003 Feb; 278(7):5473-7. PubMed ID: 12468533 [TBL] [Abstract][Full Text] [Related]
19. Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Vonica A; Gumbiner BM Dev Biol; 2002 Oct; 250(1):112-27. PubMed ID: 12297100 [TBL] [Abstract][Full Text] [Related]
20. A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Lemaire P; Darras S; Caillol D; Kodjabachian L Development; 1998 Jul; 125(13):2371-80. PubMed ID: 9609820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]