These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8756324)

  • 1. Picture story. Jellyroll boat.
    Riddihough G
    Nat Struct Biol; 1996 Aug; 3(8):675. PubMed ID: 8756324
    [No Abstract]   [Full Text] [Related]  

  • 2. Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Sharples FP; Wrench PM; Ou K; Hiller RG
    Biochim Biophys Acta; 1996 Sep; 1276(2):117-23. PubMed ID: 8816945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae.
    Hofmann E; Wrench PM; Sharples FP; Hiller RG; Welte W; Diederichs K
    Science; 1996 Jun; 272(5269):1788-91. PubMed ID: 8650577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence in carotenoid-to-chlorophyll energy transfer.
    Meneghin E; Volpato A; Cupellini L; Bolzonello L; Jurinovich S; Mascoli V; Carbonera D; Mennucci B; Collini E
    Nat Commun; 2018 Aug; 9(1):3160. PubMed ID: 30089871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of protein conformational flexibility on the electronic properties of a chromophore.
    Spezia R; Aschi M; Nola AD; Valentin MD; Carbonera D; Amadei A
    Biophys J; 2003 May; 84(5):2805-13. PubMed ID: 12719215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Plasmonic Enhancement of a Single Peridinin-Chlorophyll a-Protein Complex on DNA Origami-Based Optical Antennas.
    Kaminska I; Bohlen J; Mackowski S; Tinnefeld P; Acuna GP
    ACS Nano; 2018 Feb; 12(2):1650-1655. PubMed ID: 29353479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae.
    Damjanović A; Ritz T; Schulten K
    Biophys J; 2000 Oct; 79(4):1695-705. PubMed ID: 11023878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast carotenoid band shifts probe structure and dynamics in photosynthetic antenna complexes.
    Herek JL; Polívka T; Pullerits T; Fowler GJ; Hunter CN; Sundström V
    Biochemistry; 1998 May; 37(20):7057-61. PubMed ID: 9585514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet-triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies.
    Di Valentin M; Salvadori E; Agostini G; Biasibetti F; Ceola S; Hiller R; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2010 Oct; 1797(10):1759-67. PubMed ID: 20599677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unique photophysical properties of the Peridinin-Chlorophyll-α-Protein.
    Carbonera D; Di Valentin M; Spezia R; Mezzetti A
    Curr Protein Pept Sci; 2014; 15(4):332-50. PubMed ID: 24678668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient energy transfer from the carotenoid S(2) state in a photosynthetic light-harvesting complex.
    Macpherson AN; Arellano JB; Fraser NJ; Cogdell RJ; Gillbro T
    Biophys J; 2001 Feb; 80(2):923-30. PubMed ID: 11159459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Form follows function when plants harvest light.
    Moffat AS
    Science; 1996 Jun; 272(5269):1743-4. PubMed ID: 8650571
    [No Abstract]   [Full Text] [Related]  

  • 13. A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives.
    Mikhailyuk IK; Lokstein H; Razjivin AP
    J Biochem Biophys Methods; 2005 Apr; 63(1):10-23. PubMed ID: 15892974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.
    Kvíčalová Z; Alster J; Hofmann E; Khoroshyy P; Litvín R; Bína D; Polívka T; Pšenčík J
    Biochim Biophys Acta; 2016 Apr; 1857(4):341-9. PubMed ID: 26801214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry-adapted perturbation theory.
    Toa ZSD; Dean JC; Scholes GD
    J Photochem Photobiol B; 2019 Jan; 190():110-117. PubMed ID: 30508759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements.
    Croce R; Müller MG; Bassi R; Holzwarth AR
    Biophys J; 2001 Feb; 80(2):901-15. PubMed ID: 11159457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein.
    Ghosh S; Bishop MM; Roscioli JD; LaFountain AM; Frank HA; Beck WF
    J Phys Chem Lett; 2017 Jan; 8(2):463-469. PubMed ID: 28042923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment.
    Schulte T; Sharples FP; Hiller RG; Hofmann E
    Biochemistry; 2009 Jun; 48(21):4466-75. PubMed ID: 19371099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.
    Jordan P; Fromme P; Witt HT; Klukas O; Saenger W; Krauss N
    Nature; 2001 Jun; 411(6840):909-17. PubMed ID: 11418848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-harvesting mechanisms in purple photosynthetic bacteria.
    Isaacs NW; Cogdell RJ; Freer AA; Prince SM
    Curr Opin Struct Biol; 1995 Dec; 5(6):794-7. PubMed ID: 8749368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.