These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8756329)

  • 1. Isolation of a local tertiary folding transition in the context of a globally folded RNA.
    Narlikar GJ; Herschlag D
    Nat Struct Biol; 1996 Aug; 3(8):701-10. PubMed ID: 8756329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitating tertiary binding energies of 2' OH groups on the P1 duplex of the Tetrahymena ribozyme: intrinsic binding energy in an RNA enzyme.
    Narlikar GJ; Khosla M; Usman N; Herschlag D
    Biochemistry; 1997 Mar; 36(9):2465-77. PubMed ID: 9054551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of duplex rigidity for stability and specificity in RNA tertiary structure.
    Narlikar GJ; Bartley LE; Herschlag D
    Biochemistry; 2000 May; 39(20):6183-9. PubMed ID: 10821693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA.
    Bartley LE; Zhuang X; Das R; Chu S; Herschlag D
    J Mol Biol; 2003 May; 328(5):1011-26. PubMed ID: 12729738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.
    Narlikar GJ; Herschlag D
    Biochemistry; 1998 Jul; 37(28):9902-11. PubMed ID: 9665695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
    Benz-Moy TL; Herschlag D
    Biochemistry; 2011 Oct; 50(40):8733-55. PubMed ID: 21815635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme.
    Uchida T; Takamoto K; He Q; Chance MR; Brenowitz M
    J Mol Biol; 2003 Apr; 328(2):463-78. PubMed ID: 12691754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.
    Young BT; Silverman SK
    Biochemistry; 2002 Oct; 41(41):12271-6. PubMed ID: 12369814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding.
    Zarrinkar PP; Williamson JR
    Nat Struct Biol; 1996 May; 3(5):432-8. PubMed ID: 8612073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme.
    Uchida T; He Q; Ralston CY; Brenowitz M; Chance MR
    Biochemistry; 2002 May; 41(18):5799-806. PubMed ID: 11980483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the folding landscape of a structured RNA.
    Russell R; Zhuang X; Babcock HP; Millett IS; Doniach S; Chu S; Herschlag D
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):155-60. PubMed ID: 11756689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary structure around the guanosine-binding site of the Tetrahymena ribozyme.
    Wang JF; Cech TR
    Science; 1992 Apr; 256(5056):526-9. PubMed ID: 1315076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics.
    Heilman-Miller SL; Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 2001 May; 309(1):57-68. PubMed ID: 11491301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme.
    Shi X; Solomatin SV; Herschlag D
    J Am Chem Soc; 2012 Feb; 134(4):1910-3. PubMed ID: 22220837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.