BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 875633)

  • 1. Dopaminergic supersensitivity in striatum and olfactory tubercle following chronic administration of haloperidol or clozapine.
    Gianutsos G; Moore KE
    Life Sci; 1977 May; 20(9):1585-91. PubMed ID: 875633
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats.
    Rupniak NM; Kilpatrick G; Hall MD; Jenner P; Marsden CD
    Psychopharmacology (Berl); 1984; 84(4):512-9. PubMed ID: 6441952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol.
    Seeger TF; Thal L; Gardner EL
    Psychopharmacology (Berl); 1982; 76(2):182-7. PubMed ID: 6805029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of haloperidol and low dose clozapine on the acetylcholine turnover rate in rat forebrain structures.
    Bluth R; Langnickel R
    Biomed Biochim Acta; 1985; 44(10):1531-9. PubMed ID: 4084256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of haloperidol on dopamine turnover in the striatum, olfactory tubercule and median eminence.
    Gudelsky GA; Moore KE
    J Pharmacol Exp Ther; 1977 Jul; 202(1):149-56. PubMed ID: 874811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential sensitivity of two dopaminergic structures in rat brain to haloperidol and to clozapine.
    Wilk S; Watson E; Stanley ME
    J Pharmacol Exp Ther; 1975 Nov; 195(2):265-70. PubMed ID: 1185596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat.
    Rupniak NM; Hall MD; Mann S; Fleminger S; Kilpatrick G; Jenner P; Marsden CD
    Biochem Pharmacol; 1985 Aug; 34(15):2755-63. PubMed ID: 4040370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical methods to assess the action of clozapine and haloperidol on presynaptic dopamine neurons.
    Zivkovic B
    Adv Biochem Psychopharmacol; 1977; 16():625-30. PubMed ID: 18905
    [No Abstract]   [Full Text] [Related]  

  • 9. Lack of effects of apomorphine, haloperidol and clozapine on the synthesis and utilization of brain GABA.
    Lindgren S
    J Neural Transm; 1987; 69(1-2):47-57. PubMed ID: 3585320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of lergotrile or apomorphine induced turning behavior by haloperidol and clozapine.
    Nakamura S; Engel J; Goldstein M
    Commun Psychopharmacol; 1978; 2(3):185-90. PubMed ID: 29742
    [No Abstract]   [Full Text] [Related]  

  • 11. Behavioral evidence for supersensitivity after chronic administration of haloperidol, clozapine, and thioridazine.
    Smith RC; Davis JM
    Life Sci; 1976 Sep; 19(5):725-31. PubMed ID: 986527
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain.
    Wilmot CA; Szczepanik AM
    Brain Res; 1989 May; 487(2):288-98. PubMed ID: 2525063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions.
    Bacopoulos NG; Roth RH
    Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential drug effects on dopamine concentrations and rates of turnover in the median eminence, olfactory tubercle and corpus striatum.
    Gudelsky GA; Moore EK
    J Neural Transm; 1976; 38(2):95-105. PubMed ID: 1271052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential alteration of striatal D-1 and D-2 receptors induced by the long-term administration of haloperidol, sulpiride or clozapine to rats.
    Jenner P; Rupniak NM; Marsden CD
    Psychopharmacology Suppl; 1985; 2():174-81. PubMed ID: 3159009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible significance of clozapine-induced increase in brain dopamine.
    Gianutsos G; Moore KE
    Res Commun Chem Pathol Pharmacol; 1977 May; 17(1):29-39. PubMed ID: 877404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis.
    Ichikawa J; Meltzer HY
    Eur J Pharmacol; 1990 Feb; 176(3):371-4. PubMed ID: 2184042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perlapine and dopamine metabolism: prediction of antipsychotic efficacy.
    Wilk S; Stanley M
    Eur J Pharmacol; 1977 Jan; 41(1):65-72. PubMed ID: 12986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term effects of haloperidol, Clozapine, and methadone on rat striatal cholinergic and dopaminergic dynamics.
    Ladinsky H; Consolo S; Samanin R; Algeri S; Ponzio F
    Adv Biochem Psychopharmacol; 1980; 24():259-65. PubMed ID: 7405665
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of turning behaviour by clozapine in mice with unilateral destruction of dopaminergic nerve terminals.
    Pycock CJ; Tarsy D; Marsden CD
    J Pharm Pharmacol; 1975 Jun; 27(6):445-7. PubMed ID: 237097
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.