BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 8756456)

  • 1. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 A resolution.
    Yeh JI; Claiborne A; Hol WG
    Biochemistry; 1996 Aug; 35(31):9951-7. PubMed ID: 8756456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase.
    Crane EJ; Vervoort J; Claiborne A
    Biochemistry; 1997 Jul; 36(28):8611-8. PubMed ID: 9214307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution.
    Stehle T; Ahmed SA; Claiborne A; Schulz GE
    J Mol Biol; 1991 Oct; 221(4):1325-44. PubMed ID: 1942054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The active-site histidine-10 of enterococcal NADH peroxidase is not essential for catalytic activity.
    Crane EJ; Parsonage D; Claiborne A
    Biochemistry; 1996 Feb; 35(7):2380-7. PubMed ID: 8652580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the kinetic and redox properties of NADH peroxidase C42S and C42A mutants lacking the cysteine-sulfenic acid redox center.
    Parsonage D; Claiborne A
    Biochemistry; 1995 Jan; 34(2):435-41. PubMed ID: 7819235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change.
    Mallett TC; Claiborne A
    Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH binding site and catalysis of NADH peroxidase.
    Stehle T; Claiborne A; Schulz GE
    Eur J Biochem; 1993 Jan; 211(1-2):221-6. PubMed ID: 8425532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme.
    Lountos GT; Jiang R; Wellborn WB; Thaler TL; Bommarius AS; Orville AM
    Biochemistry; 2006 Aug; 45(32):9648-59. PubMed ID: 16893166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An L40C mutation converts the cysteine-sulfenic acid redox center in enterococcal NADH peroxidase to a disulfide.
    Miller H; Mande SS; Parsonage D; Sarfaty SH; Hol WG; Claiborne A
    Biochemistry; 1995 Apr; 34(15):5180-90. PubMed ID: 7711038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the kinetic and redox properties of the NADH peroxidase R303M mutant: correlation with the crystal structure.
    Crane EJ; Yeh JI; Luba J; Claiborne A
    Biochemistry; 2000 Aug; 39(34):10353-64. PubMed ID: 10956025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Analysis of Streptococcus pyogenes NADH Oxidase: Conformational Dynamics Involved in Formation of the C(4a)-Peroxyflavin Intermediate.
    Wallen JR; Mallett TC; Okuno T; Parsonage D; Sakai H; Tsukihara T; Claiborne A
    Biochemistry; 2015 Nov; 54(45):6815-29. PubMed ID: 26506002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-flavin redox center of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid.
    Poole LB; Claiborne A
    J Biol Chem; 1989 Jul; 264(21):12330-8. PubMed ID: 2501303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional structure of meso-diaminopimelic acid dehydrogenase from Corynebacterium glutamicum.
    Scapin G; Reddy SG; Blanchard JS
    Biochemistry; 1996 Oct; 35(42):13540-51. PubMed ID: 8885833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray crystal structural analysis of the binding site in the ferric and oxyferrous forms of the recombinant heme dehaloperoxidase cloned from Amphitrite ornata.
    de Serrano V; Chen Z; Davis MF; Franzen S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1094-101. PubMed ID: 17881827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.