These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 8756457)
1. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
4. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1997 Feb; 36(8):2257-65. PubMed ID: 9047328 [TBL] [Abstract][Full Text] [Related]
5. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474 [TBL] [Abstract][Full Text] [Related]
6. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Joshi MD; Hedberg A; McIntosh LP Protein Sci; 1997 Dec; 6(12):2667-70. PubMed ID: 9416621 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
8. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Sidhu G; Withers SG; Nguyen NT; McIntosh LP; Ziser L; Brayer GD Biochemistry; 1999 Apr; 38(17):5346-54. PubMed ID: 10220321 [TBL] [Abstract][Full Text] [Related]
9. Abnormally high pKa of an active-site glutamic acid residue in Bacillus circulans xylanase. The role of electrostatic interactions. Davoodi J; Wakarchuk WW; Campbell RL; Carey PR; Surewicz WK Eur J Biochem; 1995 Sep; 232(3):839-43. PubMed ID: 7588724 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate. Connelly GP; Withers SG; McIntosh LP Protein Sci; 2000 Mar; 9(3):512-24. PubMed ID: 10752613 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Plesniak LA; Connelly GP; Wakarchuk WW; McIntosh LP Protein Sci; 1996 Nov; 5(11):2319-28. PubMed ID: 8931150 [TBL] [Abstract][Full Text] [Related]
13. Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Paal K; Ito M; Withers SG Biochem J; 2004 Feb; 378(Pt 1):141-9. PubMed ID: 14561218 [TBL] [Abstract][Full Text] [Related]
14. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. Yang JH; Park JY; Kim SH; Yoo YJ J Biotechnol; 2008 Feb; 133(3):294-300. PubMed ID: 18077046 [TBL] [Abstract][Full Text] [Related]
15. Family 39 alpha-l-iduronidases and beta-D-xylosidases react through similar glycosyl-enzyme intermediates: identification of the human iduronidase nucleophile. Nieman CE; Wong AW; He S; Clarke L; Hopwood JJ; Withers SG Biochemistry; 2003 Jul; 42(26):8054-65. PubMed ID: 12834357 [TBL] [Abstract][Full Text] [Related]
16. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. Ludwiczek ML; Heller M; Kantner T; McIntosh LP J Mol Biol; 2007 Oct; 373(2):337-54. PubMed ID: 17822716 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a thermostable xylanase from an alkaliphilic Bacillus sp. Zhang G; Mao L; Zhao Y; Xue Y; Ma Y Biotechnol Lett; 2010 Dec; 32(12):1915-20. PubMed ID: 20730475 [TBL] [Abstract][Full Text] [Related]
18. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule. Connelly GP; McIntosh LP Biochemistry; 1998 Feb; 37(7):1810-8. PubMed ID: 9485306 [TBL] [Abstract][Full Text] [Related]
20. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]