These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8756474)
1. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
3. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457 [TBL] [Abstract][Full Text] [Related]
4. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1997 Feb; 36(8):2257-65. PubMed ID: 9047328 [TBL] [Abstract][Full Text] [Related]
5. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954 [TBL] [Abstract][Full Text] [Related]
7. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
8. Structure-function relationship of the xylanase from alkaliphilic Bacillus sp. strain 41M-1. Nakamura S; Nakai R; Namba K; Kubo T; Wakabayashi K; Aono R; Horikoshi K Nucleic Acids Symp Ser; 1995; (34):99-100. PubMed ID: 8841571 [TBL] [Abstract][Full Text] [Related]
9. Family 39 alpha-l-iduronidases and beta-D-xylosidases react through similar glycosyl-enzyme intermediates: identification of the human iduronidase nucleophile. Nieman CE; Wong AW; He S; Clarke L; Hopwood JJ; Withers SG Biochemistry; 2003 Jul; 42(26):8054-65. PubMed ID: 12834357 [TBL] [Abstract][Full Text] [Related]
10. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192 [TBL] [Abstract][Full Text] [Related]
11. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Schwarz A; Brecker L; Nidetzky B Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628 [TBL] [Abstract][Full Text] [Related]
12. Catalytic thiol and carboxylate: role of cysteine and glutamic acid in the xylosidic activity of endoxylanase from Chainia sp. (NCL 82-5-1). Subray SH; Ameeta RK; Krishna NG; Khan IM Arch Biochem Biophys; 1998 Jul; 355(2):153-9. PubMed ID: 9675021 [TBL] [Abstract][Full Text] [Related]
13. Characterization of two important histidine residues in the active site of xylanase A from Streptomyces lividans, a family 10 glycanase. Roberge M; Shareck F; Morosoli R; Kluepfel D; Dupont C Biochemistry; 1997 Jun; 36(25):7769-75. PubMed ID: 9201919 [TBL] [Abstract][Full Text] [Related]
14. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. Yang JH; Park JY; Kim SH; Yoo YJ J Biotechnol; 2008 Feb; 133(3):294-300. PubMed ID: 18077046 [TBL] [Abstract][Full Text] [Related]
15. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Sidhu G; Withers SG; Nguyen NT; McIntosh LP; Ziser L; Brayer GD Biochemistry; 1999 Apr; 38(17):5346-54. PubMed ID: 10220321 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: assessment of the active site. Nath D; Rao M Biochem Biophys Res Commun; 1998 Aug; 249(1):207-12. PubMed ID: 9705858 [TBL] [Abstract][Full Text] [Related]
17. Epoxyalkyl glycosides of D-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10. Ntarima P; Nerinckx W; Klarskov K; Devreese B; Bhat MK; Van Beeumen J; Claeyssens M Biochem J; 2000 May; 347 Pt 3(Pt 3):865-73. PubMed ID: 10769193 [TBL] [Abstract][Full Text] [Related]
18. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure. Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003 [TBL] [Abstract][Full Text] [Related]
19. Abnormally high pKa of an active-site glutamic acid residue in Bacillus circulans xylanase. The role of electrostatic interactions. Davoodi J; Wakarchuk WW; Campbell RL; Carey PR; Surewicz WK Eur J Biochem; 1995 Sep; 232(3):839-43. PubMed ID: 7588724 [TBL] [Abstract][Full Text] [Related]
20. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism. Faijes M; Pérez X; Pérez O; Planas A Biochemistry; 2003 Nov; 42(45):13304-18. PubMed ID: 14609341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]