These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 8756489)

  • 1. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease.
    Frye KJ; Perman CS; Royer CA
    Biochemistry; 1996 Aug; 35(31):10234-9. PubMed ID: 8756489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetic basis for the stabilization of staphylococcal nuclease by xylose.
    Frye KJ; Royer CA
    Protein Sci; 1997 Apr; 6(4):789-93. PubMed ID: 9098888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins.
    Whitten ST; Wooll JO; Razeghifard R; García-Moreno E B; Hilser VJ
    J Mol Biol; 2001 Jun; 309(5):1165-75. PubMed ID: 11399086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic core substitutions in calbindin D9k: effects on stability and structure.
    Julenius K; Thulin E; Linse S; Finn BE
    Biochemistry; 1998 Jun; 37(25):8915-25. PubMed ID: 9636033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
    Walkenhorst WF; Green SM; Roder H
    Biochemistry; 1997 May; 36(19):5795-805. PubMed ID: 9153420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease.
    Seemann H; Winter R; Royer CA
    J Mol Biol; 2001 Apr; 307(4):1091-102. PubMed ID: 11286558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the unfolding of an unstable mutant of staphylococcal nuclease: evidence for low temperature unfolding and compactness of the high temperature unfolded state.
    Eftink MR; Ramsay GD
    Proteins; 1997 Jun; 28(2):227-40. PubMed ID: 9188740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of the changes in denatured state structure underlying m value effects in staphylococcal nuclease.
    Wrabl J; Shortle D
    Nat Struct Biol; 1999 Sep; 6(9):876-83. PubMed ID: 10467101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the contribution of internal cavities to the volume change of protein unfolding under pressure.
    Frye KJ; Royer CA
    Protein Sci; 1998 Oct; 7(10):2217-22. PubMed ID: 9792110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure denaturation of proteins: evaluation of compressibility effects.
    Prehoda KE; Mooberry ES; Markley JL
    Biochemistry; 1998 Apr; 37(17):5785-90. PubMed ID: 9558311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.