These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 8756502)
1. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Yun DJ; D'Urzo MP; Abad L; Takeda S; Salzman R; Chen Z; Lee H; Hasegawa PM; Bressan RA Plant Physiol; 1996 Aug; 111(4):1219-25. PubMed ID: 8756502 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Suarez V; Staehelin C; Arango R; Holtorf H; Hofsteenge J; Meins F Plant Mol Biol; 2001 Mar; 45(5):609-18. PubMed ID: 11414619 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Iseli B; Boller T; Neuhaus JM Plant Physiol; 1993 Sep; 103(1):221-6. PubMed ID: 8208848 [TBL] [Abstract][Full Text] [Related]
4. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Melchers LS; Apotheker-de Groot M; van der Knaap JA; Ponstein AS; Sela-Buurlage MB; Bol JF; Cornelissen BJ; van den Elzen PJ; Linthorst HJ Plant J; 1994 Apr; 5(4):469-80. PubMed ID: 8012401 [TBL] [Abstract][Full Text] [Related]
5. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Ponstein AS; Bres-Vloemans SA; Sela-Buurlage MB; van den Elzen PJ; Melchers LS; Cornelissen BJ Plant Physiol; 1994 Jan; 104(1):109-18. PubMed ID: 8115541 [TBL] [Abstract][Full Text] [Related]
6. The complete amino acid sequence of yam (Dioscorea japonica) chitinase. A newly identified acidic class I chitinase. Araki T; Funatsu J; Kuramoto M; Konno H; Torikata T J Biol Chem; 1992 Oct; 267(28):19944-7. PubMed ID: 1400311 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and expression of the gene encoding family 19 chitinase from Streptomyces sp. J-13-3. Okazaki K; Yamashita Y; Noda M; Sueyoshi N; Kameshita I; Hayakawa S Biosci Biotechnol Biochem; 2004 Feb; 68(2):341-51. PubMed ID: 14981297 [TBL] [Abstract][Full Text] [Related]
8. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Neuhaus JM; Sticher L; Meins F; Boller T Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10362-6. PubMed ID: 1946457 [TBL] [Abstract][Full Text] [Related]
9. The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. van Buuren M; Neuhaus JM; Shinshi H; Ryals J; Meins F Mol Gen Genet; 1992 Apr; 232(3):460-9. PubMed ID: 1588915 [TBL] [Abstract][Full Text] [Related]
10. A thermostable chitinase from the antagonistic Chromobacterium violaceum that inhibits the development of phytopathogenic fungi. Sousa AJS; Silva CFB; Sousa JS; Monteiro JE; Freire JEC; Sousa BL; Lobo MDP; Monteiro-Moreira ACO; Grangeiro TB Enzyme Microb Technol; 2019 Jul; 126():50-61. PubMed ID: 31000164 [TBL] [Abstract][Full Text] [Related]
11. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Payne G; Ahl P; Moyer M; Harper A; Beck J; Meins F; Ryals J Proc Natl Acad Sci U S A; 1990 Jan; 87(1):98-102. PubMed ID: 2296608 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Itoh Y; Kawase T; Nikaidou N; Fukada H; Mitsutomi M; Watanabe T; Itoh Y Biosci Biotechnol Biochem; 2002 May; 66(5):1084-92. PubMed ID: 12092819 [TBL] [Abstract][Full Text] [Related]
13. Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Sticher L; Hofsteenge J; Neuhaus JM; Boller T; Meins F Plant Physiol; 1993 Apr; 101(4):1239-47. PubMed ID: 8310061 [TBL] [Abstract][Full Text] [Related]
14. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. Limón MC; Margolles-Clark E; Benítez T; Penttilä M FEMS Microbiol Lett; 2001 Apr; 198(1):57-63. PubMed ID: 11325554 [TBL] [Abstract][Full Text] [Related]
15. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Neuhaus JM; Ahl-Goy P; Hinz U; Flores S; Meins F Plant Mol Biol; 1991 Jan; 16(1):141-51. PubMed ID: 1888892 [TBL] [Abstract][Full Text] [Related]
16. Correct targeting of a vacuolar tobacco chitinase in Saccharomyces cerevisiae--post-translational modifications are dependent on the host strain. Kunze I; Nilsson C; Adler K; Manteuffel R; Horstmann C; Bröker M; Kunze G Biochim Biophys Acta; 1998 Feb; 1395(3):329-44. PubMed ID: 9512669 [TBL] [Abstract][Full Text] [Related]
17. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Lawton K; Ward E; Payne G; Moyer M; Ryals J Plant Mol Biol; 1992 Aug; 19(5):735-43. PubMed ID: 1643280 [TBL] [Abstract][Full Text] [Related]
18. A tobacco gene encoding a novel basic class II chitinase: a putative ancestor of basic class I and acidic class II chitinase genes. Ohme-Takagi M; Meins F; Shinshi H Mol Gen Genet; 1998 Sep; 259(5):511-5. PubMed ID: 9790582 [TBL] [Abstract][Full Text] [Related]