These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 8756653)

  • 1. RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor.
    Graveley BR; Fleming ES; Gilmartin GM
    Mol Cell Biol; 1996 Sep; 16(9):4942-51. PubMed ID: 8756653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common mechanism for the enhancement of mRNA 3' processing by U3 sequences in two distantly related lentiviruses.
    Graveley BR; Gilmartin GM
    J Virol; 1996 Mar; 70(3):1612-7. PubMed ID: 8627681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition.
    Gilmartin GM; Fleming ES; Oetjen J; Graveley BR
    Genes Dev; 1995 Jan; 9(1):72-83. PubMed ID: 7828853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of both structure and function to a defective poly(A) site by in vitro selection.
    Graveley BR; Fleming ES; Gilmartin GM
    J Biol Chem; 1996 Dec; 271(52):33654-63. PubMed ID: 8969235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure.
    Klasens BI; Thiesen M; Virtanen A; Berkhout B
    Nucleic Acids Res; 1999 Jan; 27(2):446-54. PubMed ID: 9862964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites.
    Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1994 Jul; 14(7):4682-93. PubMed ID: 7911973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural biology of poly(A) site definition.
    Yang Q; Doublié S
    Wiley Interdiscip Rev RNA; 2011; 2(5):732-47. PubMed ID: 21823232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3'-end processing of pre-mRNA.
    Beyer K; Dandekar T; Keller W
    J Biol Chem; 1997 Oct; 272(42):26769-79. PubMed ID: 9334264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3'-end formation.
    Murthy KG; Manley JL
    Genes Dev; 1995 Nov; 9(21):2672-83. PubMed ID: 7590244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A history of poly A sequences: from formation to factors to function.
    Edmonds M
    Prog Nucleic Acid Res Mol Biol; 2002; 71():285-389. PubMed ID: 12102557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein.
    Pérez Cañadillas JM; Varani G
    EMBO J; 2003 Jun; 22(11):2821-30. PubMed ID: 12773396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor.
    Dichtl B; Keller W
    EMBO J; 2001 Jun; 20(12):3197-209. PubMed ID: 11406596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes.
    Edwalds-Gilbert G; Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1993 Jun; 13(6):3472-80. PubMed ID: 7684499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Essential yeast protein with unexpected similarity to subunits of mammalian cleavage and polyadenylation specificity factor (CPSF).
    Chanfreau G; Noble SM; Guthrie C
    Science; 1996 Nov; 274(5292):1511-4. PubMed ID: 8929408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex.
    Clerici M; Faini M; Muckenfuss LM; Aebersold R; Jinek M
    Nat Struct Mol Biol; 2018 Feb; 25(2):135-138. PubMed ID: 29358758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
    Kaufmann I; Martin G; Friedlein A; Langen H; Keller W
    EMBO J; 2004 Feb; 23(3):616-26. PubMed ID: 14749727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxiliary downstream elements are required for efficient polyadenylation of mammalian pre-mRNAs.
    Chen F; Wilusz J
    Nucleic Acids Res; 1998 Jun; 26(12):2891-8. PubMed ID: 9611233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.