BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

925 related articles for article (PubMed ID: 8756714)

  • 1. Versatility of heme coordination demonstrated in a fungal peroxidase. Absorption and resonance Raman studies of Coprinus cinereus peroxidase and the Asp245-->Asn mutant at various pH values.
    Smulevich G; Neri F; Marzocchi MP; Welinder KG
    Biochemistry; 1996 Aug; 35(32):10576-85. PubMed ID: 8756714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Asp245-->Asn mutant of Coprinus cinereus peroxidase. Characterization by 1H-NMR spectroscopy and comparison with the wild-type enzyme.
    Veitch NC; Gao Y; Welinder KG
    Biochemistry; 1996 Nov; 35(45):14370-80. PubMed ID: 8916924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between catalase-peroxidase and cytochrome c peroxidase. The role of the hydrogen-bond networks for protein stability and catalysis.
    Santoni E; Jakopitsch C; Obinger C; Smulevich G
    Biochemistry; 2004 May; 43(19):5792-802. PubMed ID: 15134453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic characterization of hydroxide and aqua complexes of Fe(II)-protoheme, structural models for the axial coordination of the atypical heme of membrane cytochrome b6f complexes.
    Gomez de Gracia A; Bordes L; Desbois A
    J Am Chem Soc; 2005 Dec; 127(50):17634-43. PubMed ID: 16351093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the distal phenylalanine 54 on the structure, stability, and ligand binding of Coprinus cinereus peroxidase.
    Neri F; Indiani C; Baldi B; Vind J; Welinder KG; Smulevich G
    Biochemistry; 1999 Jun; 38(24):7819-27. PubMed ID: 10387022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme.
    Nonaka D; Wariishi H; Welinder KG; Fujii H
    Biochemistry; 2010 Jan; 49(1):49-57. PubMed ID: 19954239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evidence for a conformational transition in horseradish peroxidase at very low pH.
    Smulevich G; Paoli M; De Sanctis G; Mantini AR; Ascoli F; Coletta M
    Biochemistry; 1997 Jan; 36(3):640-9. PubMed ID: 9012679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman study of the active site of Coprinus cinereus peroxidase.
    Smulevich G; Feis A; Focardi C; Tams J; Welinder KG
    Biochemistry; 1994 Dec; 33(51):15425-32. PubMed ID: 7803406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of the horseradish peroxidase His-170-->Ala mutant activity by imidazole: importance of proximal ligand tethering.
    Newmyer SL; Sun J; Loehr TM; Ortiz de Montellano PR
    Biochemistry; 1996 Oct; 35(39):12788-95. PubMed ID: 8841121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase.
    Smulevich G; Miller MA; Kraut J; Spiro TG
    Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy.
    Kapetanaki S; Chouchane S; Girotto S; Yu S; Magliozzo RS; Schelvis JP
    Biochemistry; 2003 Apr; 42(13):3835-45. PubMed ID: 12667074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of the distal arginine in Coprinus cinereus peroxidase--structural implications.
    Neri F; Indiani C; Welinder KG; Smulevich G
    Eur J Biochem; 1998 Feb; 251(3):830-8. PubMed ID: 9490058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Cys385 in the isolated kinase insertion domain of heme-regulated eIF2 alpha kinase (HRI) as the heme axial ligand by site-directed mutagenesis and spectral characterization.
    Hirai K; Martinkova M; Igarashi J; Saiful I; Yamauchi S; El-Mashtoly S; Kitagawa T; Shimizu T
    J Inorg Biochem; 2007 Aug; 101(8):1172-9. PubMed ID: 17597215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox control in heme proteins: electrostatic substitution in the active site of leghemoglobin.
    Jones DK; Patel N; Raven EL
    Arch Biochem Biophys; 2002 Apr; 400(1):111-7. PubMed ID: 11913977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox effects on the coordination geometry and heme conformation of bis(N-methylimidazole) complexes of superstructured Fe-porphyrins. A spectroscopic study.
    Le Moigne C; Picaud T; Boussac A; Loock B; Momenteau M; Desbois A
    Inorg Chem; 2009 Nov; 48(21):10084-92. PubMed ID: 19852518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant.
    Lloyd E; Burk DL; Ferrer JC; Maurus R; Doran J; Carey PR; Brayer GD; Mauk AG
    Biochemistry; 1996 Sep; 35(36):11901-12. PubMed ID: 8794773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversion of axial coordination in myoglobin to create a "proximal" ligand binding pocket.
    Uno T; Sakamoto R; Tomisugi Y; Ishikawa Y; Wilkinson AJ
    Biochemistry; 2003 Sep; 42(34):10191-9. PubMed ID: 12939147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.