These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Diffuse lung disease: assessment with helical CT--preliminary observations of the role of maximum and minimum intensity projection images. Bhalla M; Naidich DP; McGuinness G; Gruden JF; Leitman BS; McCauley DI Radiology; 1996 Aug; 200(2):341-7. PubMed ID: 8685323 [TBL] [Abstract][Full Text] [Related]
4. Diffuse infiltrative lung disease: clinical value of sliding-thin-slab maximum intensity projection CT scans in the detection of mild micronodular patterns. Remy-Jardin M; Remy J; Artaud D; Deschildre F; Duhamel A Radiology; 1996 Aug; 200(2):333-9. PubMed ID: 8685322 [TBL] [Abstract][Full Text] [Related]
5. Effect of slab thickness on the CT detection of pulmonary nodules: use of sliding thin-slab maximum intensity projection and volume rendering. Kawel N; Seifert B; Luetolf M; Boehm T AJR Am J Roentgenol; 2009 May; 192(5):1324-9. PubMed ID: 19380557 [TBL] [Abstract][Full Text] [Related]
6. Computed tomography diagnosis of acute appendicitis: advantages of reviewing thin-section datasets using sliding slab average intensity projection technique. Lee KH; Kim YH; Hahn S; Lee KW; Kim TJ; Kang SB; Shin JH Invest Radiol; 2006 Jul; 41(7):579-85. PubMed ID: 16772851 [TBL] [Abstract][Full Text] [Related]
7. CT angiography for evaluation of living renal donors: comparison of four reconstruction methods. Kim JK; Kim JH; Bae SJ; Cho KS AJR Am J Roentgenol; 2004 Aug; 183(2):471-7. PubMed ID: 15269043 [TBL] [Abstract][Full Text] [Related]
8. Preoperative screening for lung volume reduction surgery: usefulness of combining thin-section CT with physiologic assessment. Hunsaker A; Ingenito E; Topal U; Pugatch R; Reilly J AJR Am J Roentgenol; 1998 Feb; 170(2):309-14. PubMed ID: 9456934 [TBL] [Abstract][Full Text] [Related]
9. Pulmonary emphysema: size distribution of emphysematous spaces on multidetector CT images--comparison with macroscopic and microscopic morphometry. Madani A; Van Muylem A; de Maertelaer V; Zanen J; Gevenois PA Radiology; 2008 Sep; 248(3):1036-41. PubMed ID: 18710992 [TBL] [Abstract][Full Text] [Related]
10. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification--comparison with macroscopic and microscopic morphometry. Madani A; De Maertelaer V; Zanen J; Gevenois PA Radiology; 2007 Apr; 243(1):250-7. PubMed ID: 17392257 [TBL] [Abstract][Full Text] [Related]
11. Low-Dose (2-mSv) CT in Adolescents and Young Adults With Suspected Appendicitis: Advantages of Additional Review of Thin Sections Using Multiplanar Sliding-Slab Averaging Technique. Lee YJ; Kim B; Ko Y; Cho KE; Hong SS; Kim DH; Song H; Lee KH AJR Am J Roentgenol; 2015 Nov; 205(5):W485-91. PubMed ID: 26496570 [TBL] [Abstract][Full Text] [Related]
12. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Bankier AA; De Maertelaer V; Keyzer C; Gevenois PA Radiology; 1999 Jun; 211(3):851-8. PubMed ID: 10352615 [TBL] [Abstract][Full Text] [Related]
13. Detection of the normal appendix with low-dose unenhanced CT: use of the sliding slab averaging technique. Joo SM; Lee KH; Kim YH; Kim SY; Kim K; Kim KJ; Kim B Radiology; 2009 Jun; 251(3):780-7. PubMed ID: 19336669 [TBL] [Abstract][Full Text] [Related]
14. Postprocessing technique with MDCT data improves the accuracy of the detection of lung nodules. Yoneda K; Ueno J; Nishihara S; Tsujikawa T; Morita N; Otsuka H; Furutani K; Nishitani H; Kondo K; Nishioka Y Radiat Med; 2007 Dec; 25(10):511-5. PubMed ID: 18085401 [TBL] [Abstract][Full Text] [Related]
15. [Density-mask spiral computed tomography in patients who are candidates for a lung-volume-reduction intervention: a preliminary study]. Riga B; Andres AL; Stramare R Radiol Med; 2000 Mar; 99(3):150-5. PubMed ID: 10879161 [TBL] [Abstract][Full Text] [Related]
16. Effect of Slab Thickness on the Detection of Pulmonary Nodules by Use of CT Maximum and Minimum Intensity Projection. Li WJ; Chu ZG; Zhang Y; Li Q; Zheng YN; Lv FJ AJR Am J Roentgenol; 2019 Sep; 213(3):562-567. PubMed ID: 31063429 [No Abstract] [Full Text] [Related]
17. [Exploration of the early detection of lung parenchyma micronodules, nodule coalescence and emphysema by CT and HRCT in coal miners with and without coal-worker's pneumoconiosis evidence]. Ren HM; Xing JC; Yang LJ; Han WH; Yi WJ; Chen WH Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jan; 30(1):13-6. PubMed ID: 22730681 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary emphysema: quantitative CT during expiration. Gevenois PA; De Vuyst P; Sy M; Scillia P; Chaminade L; de Maertelaer V; Zanen J; Yernault JC Radiology; 1996 Jun; 199(3):825-9. PubMed ID: 8638012 [TBL] [Abstract][Full Text] [Related]
19. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Gevenois PA; de Maertelaer V; De Vuyst P; Zanen J; Yernault JC Am J Respir Crit Care Med; 1995 Aug; 152(2):653-7. PubMed ID: 7633722 [TBL] [Abstract][Full Text] [Related]
20. Pulmonary emphysema: histopathologic correlation with minimum intensity projection imaging, high-resolution computed tomography, and pulmonary function test results. Satoh S; Kitazume Y; Taura S; Kimula Y; Shirai T; Ohdama S J Comput Assist Tomogr; 2008; 32(4):576-82. PubMed ID: 18664846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]