BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 8757292)

  • 1. Glycosylated threonine but not 4-hydroxyproline dominates the triple helix stabilizing positions in the sequence of a hydrothermal vent worm cuticle collagen.
    Mann K; Mechling DE; Bächinger HP; Eckerskorn C; Gaill F; Timpl R
    J Mol Biol; 1996 Aug; 261(2):255-66. PubMed ID: 8757292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweet is stable: glycosylation stabilizes collagen.
    Bann JG; Peyton DH; Bächinger HP
    FEBS Lett; 2000 May; 473(2):237-40. PubMed ID: 10812082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents.
    Gaill F; Mann K; Wiedemann H; Engel J; Timpl R
    J Mol Biol; 1995 Feb; 246(2):284-94. PubMed ID: 7869380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y
    J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site.
    Zal F; Suzuki T; Kawasaki Y; Childress JJ; Lallier FH; Toulmond A
    Proteins; 1997 Dec; 29(4):562-74. PubMed ID: 9408952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues.
    Shah NK; Ramshaw JA; Kirkpatrick A; Shah C; Brodsky B
    Biochemistry; 1996 Aug; 35(32):10262-8. PubMed ID: 8756681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen.
    Sicot FX; Mesnage M; Masselot M; Exposito JY; Garrone R; Deutsch J; Gaill F
    J Mol Biol; 2000 Sep; 302(4):811-20. PubMed ID: 10993725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of carbohydrate in stabilizing the triple-helix in a model for a deep-sea hydrothermal vent worm collagen.
    Bann JG; Bächinger HP; Peyton DH
    Biochemistry; 2003 Apr; 42(14):4042-8. PubMed ID: 12680757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of cuticle and interstitial collagens from worms collected at deep sea hydrothermal vents.
    Gaill F; Wiedemann H; Mann K; Kühn K; Timpl R; Engel J
    J Mol Biol; 1991 Sep; 221(1):209-23. PubMed ID: 1920405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix.
    Bann JG; Bächinger HP
    J Biol Chem; 2000 Aug; 275(32):24466-9. PubMed ID: 10827193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    Biochemistry; 2005 Feb; 44(5):1414-22. PubMed ID: 15683226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats.
    Berisio R; Granata V; Vitagliano L; Zagari A
    J Am Chem Soc; 2004 Sep; 126(37):11402-3. PubMed ID: 15366862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP
    Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix.
    Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of collagen-like heterotrimers: implications for triple-helix stability.
    Berisio R; Granata V; Vitagliano L; Zagari A
    Biopolymers; 2004 Apr; 73(6):682-8. PubMed ID: 15048771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen model peptides: Sequence dependence of triple-helix stability.
    Persikov AV; Ramshaw JA; Brodsky B
    Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.