These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. Gaill F; Mann K; Wiedemann H; Engel J; Timpl R J Mol Biol; 1995 Feb; 246(2):284-94. PubMed ID: 7869380 [TBL] [Abstract][Full Text] [Related]
4. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models. Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344 [TBL] [Abstract][Full Text] [Related]
5. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10. Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478 [TBL] [Abstract][Full Text] [Related]
6. Primary structure of the common polypeptide chain b from the multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulfide binding-site. Zal F; Suzuki T; Kawasaki Y; Childress JJ; Lallier FH; Toulmond A Proteins; 1997 Dec; 29(4):562-74. PubMed ID: 9408952 [TBL] [Abstract][Full Text] [Related]
7. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues. Shah NK; Ramshaw JA; Kirkpatrick A; Shah C; Brodsky B Biochemistry; 1996 Aug; 35(32):10262-8. PubMed ID: 8756681 [TBL] [Abstract][Full Text] [Related]
8. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. Sicot FX; Mesnage M; Masselot M; Exposito JY; Garrone R; Deutsch J; Gaill F J Mol Biol; 2000 Sep; 302(4):811-20. PubMed ID: 10993725 [TBL] [Abstract][Full Text] [Related]
9. Role of carbohydrate in stabilizing the triple-helix in a model for a deep-sea hydrothermal vent worm collagen. Bann JG; Bächinger HP; Peyton DH Biochemistry; 2003 Apr; 42(14):4042-8. PubMed ID: 12680757 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of cuticle and interstitial collagens from worms collected at deep sea hydrothermal vents. Gaill F; Wiedemann H; Mann K; Kühn K; Timpl R; Engel J J Mol Biol; 1991 Sep; 221(1):209-23. PubMed ID: 1920405 [TBL] [Abstract][Full Text] [Related]
11. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W; Battineni ML; Brodsky B Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687 [TBL] [Abstract][Full Text] [Related]
12. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix. Bann JG; Bächinger HP J Biol Chem; 2000 Aug; 275(32):24466-9. PubMed ID: 10827193 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B Biochemistry; 2005 Feb; 44(5):1414-22. PubMed ID: 15683226 [TBL] [Abstract][Full Text] [Related]
14. Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats. Berisio R; Granata V; Vitagliano L; Zagari A J Am Chem Soc; 2004 Sep; 126(37):11402-3. PubMed ID: 15366862 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence. Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606 [TBL] [Abstract][Full Text] [Related]
16. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture. Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034 [TBL] [Abstract][Full Text] [Related]
17. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Chen YS; Chen CC; Horng JC Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144 [TBL] [Abstract][Full Text] [Related]
19. Characterization of collagen-like heterotrimers: implications for triple-helix stability. Berisio R; Granata V; Vitagliano L; Zagari A Biopolymers; 2004 Apr; 73(6):682-8. PubMed ID: 15048771 [TBL] [Abstract][Full Text] [Related]
20. Collagen model peptides: Sequence dependence of triple-helix stability. Persikov AV; Ramshaw JA; Brodsky B Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]