These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8757727)
1. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis. Kochhar S; Paulus H Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1635-9. PubMed ID: 8757727 [TBL] [Abstract][Full Text] [Related]
2. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Grundy FJ; Lehman SC; Henkin TM Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12057-62. PubMed ID: 14523230 [TBL] [Abstract][Full Text] [Related]
3. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon. Merino E; Babitzke P; Yanofsky C J Bacteriol; 1995 Nov; 177(22):6362-70. PubMed ID: 7592410 [TBL] [Abstract][Full Text] [Related]
4. Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. Lu Y; Chen NY; Paulus H J Gen Microbiol; 1991 May; 137(5):1135-43. PubMed ID: 1907638 [TBL] [Abstract][Full Text] [Related]
5. Fine-structure mapping of cis-acting control sites in the lysC operon of Bacillus subtilis. Lu Y; Shevtchenko TN; Paulus H FEMS Microbiol Lett; 1992 Apr; 71(1):23-7. PubMed ID: 1624109 [TBL] [Abstract][Full Text] [Related]
6. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch. Wilson-Mitchell SN; Grundy FJ; Henkin TM Nucleic Acids Res; 2012 Jul; 40(12):5706-17. PubMed ID: 22416067 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in L-cysteine biosynthesis in Bacillus subtilis. Mansilla MC; Albanesi D; de Mendoza D J Bacteriol; 2000 Oct; 182(20):5885-92. PubMed ID: 11004190 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional analysis of the lysine-responsive and riboswitch-regulated lysC gene of Bacillus subtilis. Phan TT; Schumann W Curr Microbiol; 2009 Oct; 59(4):463-8. PubMed ID: 19636616 [TBL] [Abstract][Full Text] [Related]
9. Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. Shimotsu H; Kuroda MI; Yanofsky C; Henner DJ J Bacteriol; 1986 May; 166(2):461-71. PubMed ID: 2422155 [TBL] [Abstract][Full Text] [Related]
10. Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at the McAdams NM; Patterson A; Gollnick P J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069823 [TBL] [Abstract][Full Text] [Related]
11. A 5' RNA stem-loop participates in the transcription attenuation mechanism that controls expression of the Bacillus subtilis trpEDCFBA operon. Sudershana S; Du H; Mahalanabis M; Babitzke P J Bacteriol; 1999 Sep; 181(18):5742-9. PubMed ID: 10482516 [TBL] [Abstract][Full Text] [Related]
12. Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor. Yakhnin H; Babiarz JE; Yakhnin AV; Babitzke P J Bacteriol; 2001 Oct; 183(20):5918-26. PubMed ID: 11566991 [TBL] [Abstract][Full Text] [Related]
13. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Tortosa P; Le Coq D Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2921-7. PubMed ID: 8535520 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. Turner RJ; Lu Y; Switzer RL J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849 [TBL] [Abstract][Full Text] [Related]
15. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. Christiansen LC; Schou S; Nygaard P; Saxild HH J Bacteriol; 1997 Apr; 179(8):2540-50. PubMed ID: 9098051 [TBL] [Abstract][Full Text] [Related]
16. A Mg2+-dependent RNA tertiary structure forms in the Bacillus subtilis trp operon leader transcript and appears to interfere with trpE translation control by inhibiting TRAP binding. Schaak JE; Yakhnin H; Bevilacqua PC; Babitzke P J Mol Biol; 2003 Sep; 332(3):555-74. PubMed ID: 12963367 [TBL] [Abstract][Full Text] [Related]
17. Sequence and transcript analysis of the nitrogenase structural gene operon (nifHDK) of Rhodobacter capsulatus: evidence for intramolecular processing of nifHDK mRNA. Willison JC; Pierrard J; Hübner P Gene; 1993 Oct; 133(1):39-46. PubMed ID: 7693551 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. Mäder U; Hennig S; Hecker M; Homuth G J Bacteriol; 2004 Apr; 186(8):2240-52. PubMed ID: 15060025 [TBL] [Abstract][Full Text] [Related]
19. [Mutation analysis of the purine operon leader region in Bacillus subtilis]. Lobanov KV; korol'kova NV; Eremina SIu; Érrais Lopes L; Mironov AS Genetika; 2011 Jul; 47(7):890-9. PubMed ID: 21938952 [TBL] [Abstract][Full Text] [Related]
20. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. Sun DX; Setlow P J Bacteriol; 1991 Jun; 173(12):3831-45. PubMed ID: 1711029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]