These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 8757942)
1. Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. Rajan J; Valli K; Perkins RE; Sariaslani FS; Barns SM; Reysenbach AL; Rehm S; Ehringer M; Pace NR J Ind Microbiol; 1996 May; 16(5):319-24. PubMed ID: 8757942 [TBL] [Abstract][Full Text] [Related]
2. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Behrend C; Heesche-Wagner K Appl Environ Microbiol; 1999 Apr; 65(4):1372-7. PubMed ID: 10103224 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376 [TBL] [Abstract][Full Text] [Related]
4. Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. Rieger PG; Sinnwell V; Preuss A; Francke W; Knackmuss HJ J Bacteriol; 1999 Feb; 181(4):1189-95. PubMed ID: 9973345 [TBL] [Abstract][Full Text] [Related]
5. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Hofmann KW; Knackmuss HJ; Heiss G Appl Environ Microbiol; 2004 May; 70(5):2854-60. PubMed ID: 15128543 [TBL] [Abstract][Full Text] [Related]
6. Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure. Nipper M; Qian Y; Carr RS; Miller K Chemosphere; 2004 Aug; 56(6):519-30. PubMed ID: 15212895 [TBL] [Abstract][Full Text] [Related]
7. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Ebert S; Fischer P; Knackmuss HJ Biodegradation; 2001; 12(5):367-76. PubMed ID: 11995829 [TBL] [Abstract][Full Text] [Related]
8. Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Ebert S; Rieger PG; Knackmuss HJ J Bacteriol; 1999 May; 181(9):2669-74. PubMed ID: 10217752 [TBL] [Abstract][Full Text] [Related]
9. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Lenke H; Knackmuss HJ Appl Environ Microbiol; 1992 Sep; 58(9):2933-7. PubMed ID: 1444408 [TBL] [Abstract][Full Text] [Related]
10. NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. Nga DP; Altenbuchner J; Heiss GS J Bacteriol; 2004 Jan; 186(1):98-103. PubMed ID: 14679229 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Shen J; He R; Yu H; Wang L; Zhang J; Sun X; Li J; Han W; Xu L Bioresour Technol; 2009 Mar; 100(6):1922-30. PubMed ID: 19036580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]