These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8757942)

  • 1. Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains.
    Rajan J; Valli K; Perkins RE; Sariaslani FS; Barns SM; Reysenbach AL; Rehm S; Ehringer M; Pace NR
    J Ind Microbiol; 1996 May; 16(5):319-24. PubMed ID: 8757942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2.
    Behrend C; Heesche-Wagner K
    Appl Environ Microbiol; 1999 Apr; 65(4):1372-7. PubMed ID: 10103224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.
    Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R
    J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis.
    Rieger PG; Sinnwell V; Preuss A; Francke W; Knackmuss HJ
    J Bacteriol; 1999 Feb; 181(4):1189-95. PubMed ID: 9973345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation.
    Hofmann KW; Knackmuss HJ; Heiss G
    Appl Environ Microbiol; 2004 May; 70(5):2854-60. PubMed ID: 15128543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure.
    Nipper M; Qian Y; Carr RS; Miller K
    Chemosphere; 2004 Aug; 56(6):519-30. PubMed ID: 15212895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A.
    Ebert S; Fischer P; Knackmuss HJ
    Biodegradation; 2001; 12(5):367-76. PubMed ID: 11995829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A.
    Ebert S; Rieger PG; Knackmuss HJ
    J Bacteriol; 1999 May; 181(9):2669-74. PubMed ID: 10217752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2.
    Lenke H; Knackmuss HJ
    Appl Environ Microbiol; 1992 Sep; 58(9):2933-7. PubMed ID: 1444408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1.
    Nga DP; Altenbuchner J; Heiss GS
    J Bacteriol; 2004 Jan; 186(1):98-103. PubMed ID: 14679229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation.
    Heiss G; Hofmann KW; Trachtmann N; Walters DM; Rouvière P; Knackmuss HJ
    Microbiology (Reading); 2002 Mar; 148(Pt 3):799-806. PubMed ID: 11882715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconcentration and metabolism of picric acid (2,4,6-trinitrophenol) and picramic acid (2-amino-4,6-dinitrophenol) in rainbow trout Salmo gairdneri.
    Cooper KR; Burton DT; Goodfellow WL; Rosenblatt DH
    J Toxicol Environ Health; 1984; 14(5-6):731-47. PubMed ID: 6520884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.
    Robertson WJ; Franzmann PD; Mee BJ
    J Appl Microbiol; 2000 Feb; 88(2):248-59. PubMed ID: 10735993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of 2,4,6-trinitrophenol to a mutagen by Pseudomonas aeruginosa.
    Wyman JF; Guard HE; Won WD; Quay JH
    Appl Environ Microbiol; 1979 Feb; 37(2):222-6. PubMed ID: 107854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation.
    Weidhaas JL; Schroeder ED; Chang DP
    Biotechnol Bioeng; 2007 Aug; 97(6):1408-14. PubMed ID: 17286267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium.
    Yoon JH; Cho YG; Lee ST; Suzuki K; Nakase T; Park YH
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():675-80. PubMed ID: 10319490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats.
    Wyman JF; Serve MP; Hobson DW; Lee LH; Uddin DE
    J Toxicol Environ Health; 1992 Oct; 37(2):313-27. PubMed ID: 1404487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic and genotypic characterization of some Moorella sp. strains isolated from canned foods.
    Carlier JP; Bedora-Faure M
    Syst Appl Microbiol; 2006 Nov; 29(7):581-8. PubMed ID: 16458469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelimination of trinitroaromatic compounds: immobilization versus mineralization.
    Heiss G; Knackmuss HJ
    Curr Opin Microbiol; 2002 Jun; 5(3):282-7. PubMed ID: 12057682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF).
    Shen J; He R; Yu H; Wang L; Zhang J; Sun X; Li J; Han W; Xu L
    Bioresour Technol; 2009 Mar; 100(6):1922-30. PubMed ID: 19036580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.