These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8759740)

  • 1. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains.
    Okumura M; Matthews RJ; Robb B; Litman GW; Bork P; Thomas ML
    J Immunol; 1996 Aug; 157(4):1569-75. PubMed ID: 8759740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans.
    Montoya GE; Vernot JP; Patarroyo ME
    Tissue Antigens; 2004 Aug; 64(2):165-72. PubMed ID: 15245371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and structural analysis of a biologically active chicken c-fos cDNA: identification of evolutionarily conserved domains in fos protein.
    Mölders H; Jenuwein T; Adamkiewicz J; Müller R
    Oncogene; 1987; 1(4):377-85. PubMed ID: 3330781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain.
    Zhou LJ; Ord DC; Hughes AL; Tedder TF
    J Immunol; 1991 Aug; 147(4):1424-32. PubMed ID: 1714482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and expression of thirteen alternatively spliced exons in catfish CD45 homologs.
    Kountikov E; Wilson M; Miller N; Clem W; Bengtén E
    Dev Comp Immunol; 2004 Aug; 28(10):1023-35. PubMed ID: 15236932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates.
    Filip LC; Mundy NI
    Mol Biol Evol; 2004 Aug; 21(8):1504-11. PubMed ID: 15014144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of salmon and trout CD8alpha and CD8beta.
    Moore LJ; Somamoto T; Lie KK; Dijkstra JM; Hordvik I
    Mol Immunol; 2005 Jun; 42(10):1225-34. PubMed ID: 15829311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms.
    Lee PL; Gelbart T; West C; Halloran C; Beutler E
    Blood Cells Mol Dis; 1998 Jun; 24(2):199-215. PubMed ID: 9642100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of allelic variants of the bovine immune regulatory molecule CEACAM1 implies a pathogen-driven evolution.
    Kammerer R; Popp T; Singer BB; Schlender J; Zimmermann W
    Gene; 2004 Sep; 339():99-109. PubMed ID: 15363850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new member of the Eph family of receptors that lacks protein tyrosine kinase activity.
    Gurniak CB; Berg LJ
    Oncogene; 1996 Aug; 13(4):777-86. PubMed ID: 8761299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and evolution of the thyroglobulin type-1 domain superfamily.
    Novinec M; Kordis D; Turk V; Lenarcic B
    Mol Biol Evol; 2006 Apr; 23(4):744-55. PubMed ID: 16368776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of the mouse polymeric Ig receptor. Functional regions of the molecule are conserved among five mammalian species.
    Piskurich JF; Blanchard MH; Youngman KR; France JA; Kaetzel CS
    J Immunol; 1995 Feb; 154(4):1735-47. PubMed ID: 7836758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence evolution, processing, and posttranslational modification of zonadhesin D domains in primates, as inferred from cDNA data.
    Herlyn H; Zischler H
    Gene; 2005 Dec; 362():85-97. PubMed ID: 16185823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point mutation in the second phosphatase domain of CD45 abrogates tyrosine phosphatase activity.
    Ng DH; Maiti A; Johnson P
    Biochem Biophys Res Commun; 1995 Jan; 206(1):302-9. PubMed ID: 7818534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD154-CD40 interactions are essential for thymus-dependent antibody production in zebrafish: insights into the origin of costimulatory pathway in helper T cell-regulated adaptive immunity in early vertebrates.
    Gong YF; Xiang LX; Shao JZ
    J Immunol; 2009 Jun; 182(12):7749-62. PubMed ID: 19494299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphatase domains of LAR, CD45, and PTP1B: structural correlations with peptide-based inhibitors.
    Glover NR; Tracey AS
    Biochem Cell Biol; 2000; 78(1):39-50. PubMed ID: 10735562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the chicken CD200 receptor family.
    Viertlboeck BC; Hanczaruk MA; Schmitt FC; Schmitt R; Göbel TW
    Mol Immunol; 2008 Apr; 45(7):2097-105. PubMed ID: 18062907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule.
    Holm D; Fink DR; Grønlund J; Hansen S; Holmskov U
    Mol Immunol; 2009 May; 46(8-9):1663-72. PubMed ID: 19297026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD45 in memory and disease.
    Tchilian EZ; Beverley PC
    Arch Immunol Ther Exp (Warsz); 2002; 50(2):85-93. PubMed ID: 12022705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of bovine P-selectin glycoprotein ligand-1.
    Xu J; Cai J; Barger BA; Peek S; Darien BJ
    Vet Immunol Immunopathol; 2006 Mar; 110(1-2):155-61. PubMed ID: 16263180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.