These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 8759790)
1. Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. Stratford M; Anslow PA FEMS Microbiol Lett; 1996 Aug; 142(1):53-8. PubMed ID: 8759790 [TBL] [Abstract][Full Text] [Related]
2. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Stratford M; Nebe-von-Caron G; Steels H; Novodvorska M; Ueckert J; Archer DB Int J Food Microbiol; 2013 Feb; 161(3):164-71. PubMed ID: 23334094 [TBL] [Abstract][Full Text] [Related]
3. Weak acid preservatives block the heat shock response and heat-shock-element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibitory action partially relieved by respiratory deficiency. Cheng L; Piper PW Microbiology (Reading); 1994 May; 140 ( Pt 5)():1085-96. PubMed ID: 8025674 [TBL] [Abstract][Full Text] [Related]
4. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Piper P; Calderon CO; Hatzixanthis K; Mollapour M Microbiology (Reading); 2001 Oct; 147(Pt 10):2635-2642. PubMed ID: 11577142 [No Abstract] [Full Text] [Related]
5. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Stratford M; Plumridge A; Nebe-von-Caron G; Archer DB Int J Food Microbiol; 2009 Nov; 136(1):37-43. PubMed ID: 19846233 [TBL] [Abstract][Full Text] [Related]
6. Evidence that sorbic acid does not inhibit yeast as a classic 'weak acid preservative'. Stratford M; Anslow PA Lett Appl Microbiol; 1998 Oct; 27(4):203-6. PubMed ID: 9812395 [TBL] [Abstract][Full Text] [Related]
7. Auxotrophy for uridine increases the sensitivity of Aspergillus niger to weak-acid preservatives. Melin P; Stratford M; Plumridge A; Archer DB Microbiology (Reading); 2008 Apr; 154(Pt 4):1251-1257. PubMed ID: 18375817 [TBL] [Abstract][Full Text] [Related]
8. Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Holyoak CD; Stratford M; McMullin Z; Cole MB; Crimmins K; Brown AJ; Coote PJ Appl Environ Microbiol; 1996 Sep; 62(9):3158-64. PubMed ID: 8795204 [TBL] [Abstract][Full Text] [Related]
9. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Stratford M; Steels H; Nebe-von-Caron G; Novodvorska M; Hayer K; Archer DB Int J Food Microbiol; 2013 Aug; 166(1):126-34. PubMed ID: 23856006 [TBL] [Abstract][Full Text] [Related]
10. Modelling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Arroyo-López FN; Bautista-Gallego J; Durán-Quintana MC; Garrido-Fernández A Food Microbiol; 2008 Jun; 25(4):566-74. PubMed ID: 18456111 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of weak acid preservatives on spoilage fungi of bakery products. Moro CB; Lemos JG; Gasperini AM; Stefanello A; Garcia MV; Copetti MV Int J Food Microbiol; 2022 Aug; 374():109723. PubMed ID: 35643035 [TBL] [Abstract][Full Text] [Related]
12. The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. Stratford M; Vallières C; Geoghegan IA; Archer DB; Avery SV mSphere; 2020 May; 5(3):. PubMed ID: 32461271 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effects of weak-acid preservatives and pH on the growth of Zygosaccharomyces bailii. Cole MB; Keenan MH Yeast; 1986 Jun; 2(2):93-100. PubMed ID: 3505744 [TBL] [Abstract][Full Text] [Related]
14. Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. Cheng L; Moghraby J; Piper PW FEMS Microbiol Lett; 1999 Jan; 170(1):89-95. PubMed ID: 9919656 [TBL] [Abstract][Full Text] [Related]
15. The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae. Van den Broek PJ; Haasnoot CJ; Van Leeuwen CC; Van Steveninck J Biochim Biophys Acta; 1982 Aug; 689(3):429-36. PubMed ID: 6751390 [TBL] [Abstract][Full Text] [Related]
16. Weak acid and alkali stress regulate phosphatidylinositol bisphosphate synthesis in Saccharomyces cerevisiae. Mollapour M; Phelan JP; Millson SH; Piper PW; Cooke FT Biochem J; 2006 Apr; 395(1):73-80. PubMed ID: 16316315 [TBL] [Abstract][Full Text] [Related]
17. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. Piper P; Mahé Y; Thompson S; Pandjaitan R; Holyoak C; Egner R; Mühlbauer M; Coote P; Kuchler K EMBO J; 1998 Aug; 17(15):4257-65. PubMed ID: 9687494 [TBL] [Abstract][Full Text] [Related]
18. High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative. Papadimitriou MN; Resende C; Kuchler K; Brul S Int J Food Microbiol; 2007 Jan; 113(2):173-9. PubMed ID: 17141908 [TBL] [Abstract][Full Text] [Related]
19. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Mollapour M; Shepherd A; Piper PW Yeast; 2008 Mar; 25(3):169-77. PubMed ID: 18240334 [TBL] [Abstract][Full Text] [Related]
20. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis. van Beilen JW; Teixeira de Mattos MJ; Hellingwerf KJ; Brul S Appl Environ Microbiol; 2014 Oct; 80(19):5918-26. PubMed ID: 25038097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]