These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 8759846)
1. The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. Eriksson MJ; Clarke AK J Bacteriol; 1996 Aug; 178(16):4839-46. PubMed ID: 8759846 [TBL] [Abstract][Full Text] [Related]
2. Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. Porankiewicz J; Clarke AK J Bacteriol; 1997 Aug; 179(16):5111-7. PubMed ID: 9260953 [TBL] [Abstract][Full Text] [Related]
3. The Escherichia coli heat shock protein ClpB restores acquired thermotolerance to a cyanobacterial clpB deletion mutant. Eriksson MJ; Clarke AK Cell Stress Chaperones; 2000 Jul; 5(3):255-64. PubMed ID: 11005383 [TBL] [Abstract][Full Text] [Related]
4. The truncated form of the bacterial heat shock protein ClpB/HSP100 contributes to development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. Clarke AK; Eriksson MJ J Bacteriol; 2000 Dec; 182(24):7092-6. PubMed ID: 11092876 [TBL] [Abstract][Full Text] [Related]
5. The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants. Clarke AK; Eriksson MJ Plant Mol Biol; 1996 Jul; 31(4):721-30. PubMed ID: 8806403 [TBL] [Abstract][Full Text] [Related]
6. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Yang JY; Sun Y; Sun AQ; Yi SY; Qin J; Li MH; Liu J Plant Mol Biol; 2006 Oct; 62(3):385-95. PubMed ID: 16912911 [TBL] [Abstract][Full Text] [Related]
7. Novel form of ClpB/HSP100 protein in the cyanobacterium Synechococcus. Eriksson MJ; Schelin J; Miskiewicz E; Clarke AK J Bacteriol; 2001 Dec; 183(24):7392-6. PubMed ID: 11717299 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Clarke AK; Schelin J; Porankiewicz J Plant Mol Biol; 1998 Jul; 37(5):791-801. PubMed ID: 9678574 [TBL] [Abstract][Full Text] [Related]
9. ClpB is the Escherichia coli heat shock protein F84.1. Squires CL; Pedersen S; Ross BM; Squires C J Bacteriol; 1991 Jul; 173(14):4254-62. PubMed ID: 2066329 [TBL] [Abstract][Full Text] [Related]
10. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). Kitagawa M; Wada C; Yoshioka S; Yura T J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060 [TBL] [Abstract][Full Text] [Related]
11. The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Porankiewicz J; Schelin J; Clarke AK Mol Microbiol; 1998 Jul; 29(1):275-83. PubMed ID: 9701820 [TBL] [Abstract][Full Text] [Related]
12. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. Kedzierska S; Matuszewska E FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148 [TBL] [Abstract][Full Text] [Related]
13. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Schelin J; Lindmark F; Clarke AK Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312 [TBL] [Abstract][Full Text] [Related]
14. ClpB in a cyanobacterium: predicted structure, phylogenetic relationships, and regulation by light and temperature. Celerin M; Gilpin AA; Schisler NJ; Ivanov AG; Miskiewicz E; Krol M; Laudenbach DE J Bacteriol; 1998 Oct; 180(19):5173-82. PubMed ID: 9748452 [TBL] [Abstract][Full Text] [Related]
15. Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Keeler SJ; Boettger CM; Haynes JG; Kuches KA; Johnson MM; Thureen DL; Keeler CL; Kitto SL Plant Physiol; 2000 Jul; 123(3):1121-32. PubMed ID: 10889261 [TBL] [Abstract][Full Text] [Related]
16. Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. Ingmer H; Vogensen FK; Hammer K; Kilstrup M J Bacteriol; 1999 Apr; 181(7):2075-83. PubMed ID: 10094684 [TBL] [Abstract][Full Text] [Related]
17. HtpG plays a role in cold acclimation in cyanobacteria. Hossain MM; Nakamoto H Curr Microbiol; 2002 Apr; 44(4):291-6. PubMed ID: 11910501 [TBL] [Abstract][Full Text] [Related]
18. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. Nakamoto H; Suzuki N; Roy SK FEBS Lett; 2000 Oct; 483(2-3):169-74. PubMed ID: 11042275 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene. Murphy RC; Gasparich GE; Bryant DA; Porter RD J Bacteriol; 1990 Feb; 172(2):967-76. PubMed ID: 2105307 [TBL] [Abstract][Full Text] [Related]
20. A high temperature-sensitive mutant of Synechococcus sp. PCC 7002 with modifications in the endogenous plasmid, pAQ1. Kimura A; Hamada T; Morita EH; Hayashi H Plant Cell Physiol; 2002 Feb; 43(2):217-23. PubMed ID: 11867701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]