These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8759885)

  • 21. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of iron deficiency on erythrocyte deformability.
    Reinhart WH
    Br J Haematol; 1992 Apr; 80(4):550-5. PubMed ID: 1581241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Red cell membrane deformability: new data.
    Bull BS; Brailsford JD
    Blood; 1976 Nov; 48(5):663-7. PubMed ID: 974263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN; Berg RM
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T; Seki J; Itano T; Sugihara-Seki M
    Biorheology; 2018; 54(5-6):153-165. PubMed ID: 29614620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. O(2) release from erythrocytes flowing in a narrow O(2)-permeable tube: effects of erythrocyte aggregation.
    Tateishi N; Suzuki Y; Cicha I; Maeda N
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H448-56. PubMed ID: 11406514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion and convection in the capillaries in sickle-cell disease.
    Berger SA; King WS
    Blood Cells; 1982; 8(1):153-61. PubMed ID: 7115973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired red cell deformability in iron deficient subjects.
    Brandão MM; Castro Mde L; Fontes A; Cesar CL; Costa FF; Saad ST
    Clin Hemorheol Microcirc; 2009; 43(3):217-21. PubMed ID: 19847056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the presence of hardened erythrocytes on deformation-orientation characteristics of normal erythrocytes in shear flow studied by the spin label method.
    Kon K; O'Bryan ER; Kon H
    Biorheology; 1985; 22(2):105-17. PubMed ID: 2985145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application.
    Ruef P; Stadler AA; Poeschl J
    Clin Hemorheol Microcirc; 2014; 58(2):317-31. PubMed ID: 23313873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The initiation of post-capillary margination of leukocytes: studies in vitro on the influence of erythrocyte concentration and flow velocity.
    Bagge U; Blixt A; Strid KG
    Int J Microcirc Clin Exp; 1983; 2(3):215-27. PubMed ID: 6678848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biology of red cells: non-nucleated erythrocytes as fluid drop-like cell fragments.
    Schmid-Schönbein H; Gaehtgens P; Fischer T; Stöhr-Liesen M
    Int J Microcirc Clin Exp; 1984; 3(2):161-96. PubMed ID: 6386726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations by leukocytes of erythrocyte flow in microchannels.
    La Celle PL
    Blood Cells; 1986; 12(1):179-89. PubMed ID: 3466657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.