These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8759946)

  • 1. On the incorporation of moiré shape measurements in finite-element models of the cat eardrum.
    Funnell WR; Decraemer WF
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):925-32. PubMed ID: 8759946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of the cat eardrum to static pressures: mobile versus immobile malleus.
    Ladak HM; Decraemer WF; Dirckx JJ; Funnell WR
    J Acoust Soc Am; 2004 Nov; 116(5):3008-21. PubMed ID: 15603146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of middle-ear static pressure on pars tensa and pars flaccida of gerbil ears.
    Lee CY; Rosowski JJ
    Hear Res; 2001 Mar; 153(1-2):146-63. PubMed ID: 11223305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A geometrically nonlinear finite-element model of the cat eardrum.
    Ladak HM; Funnell WR; Decraemer WF; Dirckx JJ
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):2859-68. PubMed ID: 16708944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape and derived geometrical parameters of the adult, human tympanic membrane measured with a phase-shift moiré interferometer.
    Decraemer WF; Dirckx JJ; Funnell WR
    Hear Res; 1991 Jan; 51(1):107-21. PubMed ID: 2013538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency coupling between eardrum and manubrium in a finite-element model.
    Funnell WR
    J Acoust Soc Am; 1996 May; 99(5):3036-43. PubMed ID: 8642115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the damped frequency response of a finite-element model of the cat eardrum.
    Funnell WR; Decraemer WF; Khanna SM
    J Acoust Soc Am; 1987 Jun; 81(6):1851-9. PubMed ID: 3611506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement of the gerbil tympanic membrane under static pressure variations measured with a real-time differential moire interferometer.
    von Unge M; Decraemer WF; Bagger-Sjöbäck D; Dirckx JJ
    Hear Res; 1993 Nov; 70(2):229-42. PubMed ID: 8294267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum.
    Funnell WR
    J Acoust Soc Am; 1983 May; 73(5):1657-61. PubMed ID: 6863742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Sweeps.
    Kose O; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):739-750. PubMed ID: 36100816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency finite-element modeling of the gerbil middle ear.
    Elkhouri N; Liu H; Funnell WR
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Displacement pattern of the normal pars flaccida in the gerbil.
    Larsson C; von Unge M; Dirckx JJ; Decraemer WF; Bagger-Sjöbäck D
    Otol Neurotol; 2001 Jul; 22(4):558-66. PubMed ID: 11449117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Steps.
    Kose O; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2020 Aug; 21(4):287-302. PubMed ID: 32783164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eardrum displacement and strain in the Tokay gecko (Gekko gecko) under quasi-static pressure loads.
    Livens P; Gladiné K; Dirckx JJJ
    Hear Res; 2020 Mar; 387():107877. PubMed ID: 31958745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of the cat eardrum as a thin shell using the finite-element method.
    Funnell WR; Laszlo CA
    J Acoust Soc Am; 1978 May; 63(5):1461-7. PubMed ID: 690327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum.
    Funnell WR; Khanna SM; Decraemer WF
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2082-90. PubMed ID: 1597600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the fibers distribution in the human eardrum: A biomechanical study.
    Gentil F; Parente M; Martins P; Garbe C; Santos C; Areias B; Branco C; Paço J; Jorge RN
    J Biomech; 2016 Jun; 49(9):1518-1523. PubMed ID: 27036071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of middle ear components on eardrum quasi-static deformation.
    Dirckx JJ; Decraemer WF
    Hear Res; 2001 Jul; 157(1-2):124-37. PubMed ID: 11470192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.