BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 8760245)

  • 1. Beta 2-adrenergic function in cultured rat proximal tubule epithelial cells.
    Singh H; Linas S
    Am J Physiol; 1996 Jul; 271(1 Pt 2):F71-7. PubMed ID: 8760245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of protein kinase C in beta 2-adrenoceptor function in cultured rat proximal tubule epithelial cells.
    Singh H; Linas SL
    Am J Physiol; 1997 Aug; 273(2 Pt 2):F193-9. PubMed ID: 9277579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiotensin II-dependent proximal tubule sodium transport requires receptor-mediated endocytosis.
    Schelling JR; Linas SL
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C669-75. PubMed ID: 8166230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-adrenergic receptor function in rat proximal tubule epithelial cells in culture.
    Hanson AS; Linas SL
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F553-60. PubMed ID: 7733311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells.
    Holthouser KA; Mandal A; Merchant ML; Schelling JR; Delamere NA; Valdes RR; Tyagi SC; Lederer ED; Khundmiri SJ
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F77-90. PubMed ID: 20427472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of FK 506/520 action on rat renal proximal tubular Na+, K+-ATPase activity.
    Holtbäck U; Eklöf AC
    Kidney Int; 1999 Sep; 56(3):1014-21. PubMed ID: 10469369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of Na(+)/K (+)-ATPase parallels the increase in sodium transport and potassium recycling in an in vitro model of proximal tubule cellular ageing.
    Silva E; Gomes P; Soares-da-Silva P
    J Membr Biol; 2006; 212(3):163-75. PubMed ID: 17334838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for the ouabain-stimulated increase in Na-K ATPase activity.
    Khundmiri SJ; Salyer SA; Farmer B; Qipshidze-Kelm N; Murray RD; Clark BJ; Xie Z; Pressley TA; Lederer ED
    Biochim Biophys Acta; 2014 Jun; 1843(6):1089-102. PubMed ID: 24566089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic agonists and the Na+-K+-adenosine triphosphatase from rabbit proximal tubules and their basolateral membranes.
    Podevin RA; Parini A
    J Pharmacol Exp Ther; 1989 Aug; 250(2):672-7. PubMed ID: 2547943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term terbutaline exposure stimulates alpha1-Na+-K+-ATPase expression at posttranscriptional level in rat fetal distal lung epithelial cells.
    Rahman MS; Gandhi S; Otulakowski G; Duan W; Sarangapani A; O'Brodovich H
    Am J Physiol Lung Cell Mol Physiol; 2010 Jan; 298(1):L96-L104. PubMed ID: 19880505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin enhances sodium sensitivity of Na-K-ATPase in isolated rat proximal convoluted tubule.
    Féraille E; Carranza ML; Rousselot M; Favre H
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F55-62. PubMed ID: 8048565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-adrenergic stimulation of Na+, K+, Cl- cotransport in fetal nonpigmented ciliary epithelial cells.
    Crook RB; Riese K
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1047-57. PubMed ID: 8631620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldosterone regulates Na(+), K(+) ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor.
    Salyer SA; Parks J; Barati MT; Lederer ED; Clark BJ; Klein JD; Khundmiri SJ
    Biochim Biophys Acta; 2013 Oct; 1833(10):2143-52. PubMed ID: 23684706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of lung liquid clearance by isoproterenol in rat lungs.
    Saldías F; Lecuona E; Friedman E; Barnard ML; Ridge KM; Sznajder JI
    Am J Physiol; 1998 May; 274(5):L694-701. PubMed ID: 9612284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells.
    Bertorello AM; Ridge KM; Chibalin AV; Katz AI; Sznajder JI
    Am J Physiol; 1999 Jan; 276(1):L20-7. PubMed ID: 9887051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of apical NHE3 trafficking by ouabain-induced activation of the basolateral Na+-K+-ATPase receptor complex.
    Cai H; Wu L; Qu W; Malhotra D; Xie Z; Shapiro JI; Liu J
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C555-63. PubMed ID: 18077602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular effects of beta-adrenergic and of cAMP stimulation on potassium transport in rat alveolar epithelium.
    Saumon G; Basset G; Bouchonnet F; Crone C
    Pflugers Arch; 1989 Jul; 414(3):340-5. PubMed ID: 2571117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle-dependent and kinase-specific regulation of the apical Na/H exchanger and the Na,K-ATPase in the kidney cell line LLC-PK1 by calcitonin.
    Chakraborty M; Chatterjee D; Gorelick FS; Baron R
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2115-9. PubMed ID: 8134357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropeptide Y shifts equilibrium between alpha- and beta-adrenergic tonus in proximal tubule cells.
    Holtbäck U; Ohtomo Y; Förberg P; Sahlgren B; Aperia A
    Am J Physiol; 1998 Jul; 275(1):F1-7. PubMed ID: 9688998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition.
    Zhang Y; Norian JM; Magyar CE; Holstein-Rathlou NH; Mircheff AK; McDonough AA
    Am J Physiol; 1999 May; 276(5):F711-9. PubMed ID: 10330053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.