These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 8760500)
1. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. Saldanha R; Ellington A; Lambowitz AM J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500 [TBL] [Abstract][Full Text] [Related]
2. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. Caprara MG; Myers CA; Lambowitz AM J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760 [TBL] [Abstract][Full Text] [Related]
3. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782 [TBL] [Abstract][Full Text] [Related]
4. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621 [TBL] [Abstract][Full Text] [Related]
5. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
6. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4-P6 domain based on analysis of mutations at the junction of the P4-P6 stacked helices. Chen X; Gutell RR; Lambowitz AM J Mol Biol; 2000 Aug; 301(2):265-83. PubMed ID: 10926509 [TBL] [Abstract][Full Text] [Related]
7. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of a group I intron active site from its component tertiary structural domains. Doudna JA; Cech TR RNA; 1995 Mar; 1(1):36-45. PubMed ID: 7489486 [TBL] [Abstract][Full Text] [Related]
9. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. Chen X; Mohr G; Lambowitz AM RNA; 2004 Apr; 10(4):634-44. PubMed ID: 15037773 [TBL] [Abstract][Full Text] [Related]
10. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr G; Caprara MG; Guo Q; Lambowitz AM Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484 [TBL] [Abstract][Full Text] [Related]
11. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. Lamech LT; Mallam AL; Lambowitz AM PLoS Biol; 2014 Dec; 12(12):e1002028. PubMed ID: 25536042 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF. Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940 [TBL] [Abstract][Full Text] [Related]
13. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Doherty EA; Doudna JA Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992 [TBL] [Abstract][Full Text] [Related]
14. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Caprara MG; Lehnert V; Lambowitz AM; Westhof E Cell; 1996 Dec; 87(6):1135-45. PubMed ID: 8978617 [TBL] [Abstract][Full Text] [Related]
15. Minimal catalytic domain of a group I self-splicing intron RNA. Ikawa Y; Shiraishi H; Inoue T Nat Struct Biol; 2000 Nov; 7(11):1032-5. PubMed ID: 11062558 [TBL] [Abstract][Full Text] [Related]
16. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Kittle JD; Mohr G; Gianelos JA; Wang H; Lambowitz AM Genes Dev; 1991 Jun; 5(6):1009-21. PubMed ID: 1828448 [TBL] [Abstract][Full Text] [Related]
17. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis. Szewczak AA; Cech TR RNA; 1997 Aug; 3(8):838-49. PubMed ID: 9257643 [TBL] [Abstract][Full Text] [Related]
18. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Mohr G; Lambowitz AM Nature; 1991 Nov; 354(6349):164-7. PubMed ID: 1658660 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA. Geese WJ; Waring RB J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164 [TBL] [Abstract][Full Text] [Related]
20. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. Murphy FL; Cech TR J Mol Biol; 1994 Feb; 236(1):49-63. PubMed ID: 8107125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]