BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8760871)

  • 1. Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist.
    Chrast-Balz J; Hooft van Huijsduijnen R
    Nucleic Acids Res; 1996 Aug; 24(15):2900-4. PubMed ID: 8760871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transactivator mutants with altered effector specificity allow selective regulation of two genes by tetracycline variants.
    Krueger C; Schmidt A; Danke C; Hillen W; Berens C
    Gene; 2004 Apr; 331():125-31. PubMed ID: 15094198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells.
    Yao F; Svensjö T; Winkler T; Lu M; Eriksson C; Eriksson E
    Hum Gene Ther; 1998 Sep; 9(13):1939-50. PubMed ID: 9741432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of action of a herpes virus VP16/tetracycline-dependent trans-activator in mammalian cell cultures.
    Magalini A; Ferrari F; Savoldi G; Ingrassia R; Albertini A; Pollio G; Patrone C; Maggi A; Di Lorenzo D
    DNA Cell Biol; 1995 Aug; 14(8):665-71. PubMed ID: 7646813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes.
    Berens C; Hillen W
    Eur J Biochem; 2003 Aug; 270(15):3109-21. PubMed ID: 12869186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetracycline-inducible expression systems with reduced basal activity in mammalian cells.
    Forster K; Helbl V; Lederer T; Urlinger S; Wittenburg N; Hillen W
    Nucleic Acids Res; 1999 Jan; 27(2):708-10. PubMed ID: 9863002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic mammalian trigger-controlled bipartite transcription factors.
    Folcher M; Xie M; Spinnler A; Fussenegger M
    Nucleic Acids Res; 2013 Jul; 41(13):e134. PubMed ID: 23685433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of myosin A expression by a newly established tetracycline repressor-based inducible system in Toxoplasma gondii.
    Meissner M; Brecht S; Bujard H; Soldati D
    Nucleic Acids Res; 2001 Nov; 29(22):E115. PubMed ID: 11713335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tet repressor-tetracycline interaction.
    Kaszycki P; Guz A; Drwiega M; Wasylewski Z
    J Protein Chem; 1996 Oct; 15(7):607-19. PubMed ID: 8968952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional activation by tetracyclines in mammalian cells.
    Gossen M; Freundlieb S; Bender G; Müller G; Hillen W; Bujard H
    Science; 1995 Jun; 268(5218):1766-9. PubMed ID: 7792603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teaching TetR to recognize a new inducer.
    Scholz O; Köstner M; Reich M; Gastiger S; Hillen W
    J Mol Biol; 2003 May; 329(2):217-27. PubMed ID: 12758071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid selection of tetracycline-controlled inducible cell lines using a green fluorescent-transactivator fusion protein.
    Callus BA; Mathey-Prevot B
    Biochem Biophys Res Commun; 1999 Apr; 257(3):874-8. PubMed ID: 10208877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential.
    Baron U; Gossen M; Bujard H
    Nucleic Acids Res; 1997 Jul; 25(14):2723-9. PubMed ID: 9207017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human programmed cell death-2 (PDCD2) gene is a target of BCL6 repression: implications for a role of BCL6 in the down-regulation of apoptosis.
    Baron BW; Anastasi J; Thirman MJ; Furukawa Y; Fears S; Kim DC; Simone F; Birkenbach M; Montag A; Sadhu A; Zeleznik-Le N; McKeithan TW
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2860-5. PubMed ID: 11854457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight control of transcription in Toxoplasma gondii using an alternative tet repressor.
    van Poppel NF; Welagen J; Duisters RF; Vermeulen AN; Schaap D
    Int J Parasitol; 2006 Apr; 36(4):443-52. PubMed ID: 16516216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study.
    Aleksandrov A; Schuldt L; Hinrichs W; Simonson T
    J Mol Biol; 2008 May; 378(4):898-912. PubMed ID: 18395746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-way interdomain signal transduction in tetracycline repressor.
    Reichheld SE; Davidson AR
    J Mol Biol; 2006 Aug; 361(2):382-9. PubMed ID: 16844141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetracycline-regulated gene expression switch in Xenopus laevis.
    Ridgway P; Quivy JP; Almouzni G
    Exp Cell Res; 2000 May; 256(2):392-9. PubMed ID: 10772812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein.
    Vaysse L; Harbottle R; Bigger B; Bergau A; Tolmachov O; Coutelle C
    J Biol Chem; 2004 Feb; 279(7):5555-64. PubMed ID: 14607832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p65 domain from NF-kappaB is an efficient human activator in the tetracycline-regulatable gene expression system.
    Urlinger S; Helbl V; Guthmann J; Pook E; Grimm S; Hillen W
    Gene; 2000 Apr; 247(1-2):103-10. PubMed ID: 10773449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.