These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 8761263)

  • 1. Effects of length changes on Na+ current amplitude and excitability near and far from the end-plate.
    Ruff RL
    Muscle Nerve; 1996 Sep; 19(9):1084-92. PubMed ID: 8761263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.
    Ruff RL; Lennon VA
    Ann Neurol; 1998 Mar; 43(3):370-9. PubMed ID: 9506554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers.
    Ruff RL; Whittlesey D
    Muscle Nerve; 1993 Sep; 16(9):922-9. PubMed ID: 8355723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers.
    Ruff RL
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C229-34. PubMed ID: 1733232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Na+ currents from type IIa and IIb human intercostal muscle fibers.
    Ruff RL; Whittlesey D
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C171-7. PubMed ID: 8338126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium channels near end-plates and nuclei of snake skeletal muscle.
    Roberts WM
    J Physiol; 1987 Jul; 388():213-32. PubMed ID: 2443690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+ current densities and voltage dependence in human intercostal muscle fibres.
    Ruff RL; Whittlesey D
    J Physiol; 1992 Dec; 458():85-97. PubMed ID: 1338797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-channel basis of slow inactivation of Na+ channels in rat skeletal muscle.
    Ruff RL
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C971-81. PubMed ID: 8843728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na channel density in extrajunctional sarcolemma of fast and slow twitch mouse skeletal muscle fibres: functional implications and plasticity after fast motoneuron transplantation on to a slow muscle.
    Milton RL; Behforouz MA
    J Muscle Res Cell Motil; 1995 Aug; 16(4):430-9. PubMed ID: 7499483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiology of postsynaptic activation.
    Ruff RL
    Ann N Y Acad Sci; 1998 May; 841():57-70. PubMed ID: 9668221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium channel regulation of skeletal muscle membrane excitability.
    Ruff RL
    Ann N Y Acad Sci; 1997 Dec; 835():64-76. PubMed ID: 9616762
    [No Abstract]   [Full Text] [Related]  

  • 13. Action potential generation in rat slow- and fast-twitch muscles.
    Wood SJ; Slater CR
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):401-10. PubMed ID: 7473206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and slow twitch skeletal muscle fibres differ in their distribution of Na channels near the endplate.
    Milton RL; Lupa MT; Caldwell JH
    Neurosci Lett; 1992 Jan; 135(1):41-4. PubMed ID: 1311822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-plate potentials in a model muscle fiber. Corrections for the effects of membrane potential on currents and on channel lifetimes.
    Van der Kloot W; Cohen IS
    Biophys J; 1984 May; 45(5):905-11. PubMed ID: 6329346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na channels in skeletal muscle concentrated near the neuromuscular junction.
    Beam KG; Caldwell JH; Campbell DT
    Nature; 1985 Feb 14-20; 313(6003):588-90. PubMed ID: 2578630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of permeant monovalent cations on end-plate channels.
    Gage PW; Van Helden D
    J Physiol; 1979 Mar; 288():509-28. PubMed ID: 112241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P77-8. PubMed ID: 11542373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of sodium channels during development and maturation of the neuromuscular junction.
    Lupa MT; Krzemien DM; Schaller KL; Caldwell JH
    J Neurosci; 1993 Mar; 13(3):1326-36. PubMed ID: 8382738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.