These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 8761267)

  • 1. Single channel evidence for a cytoskeletal defect involving acetylcholine receptors and calcium influx in cultured dystrophic (mdx) myotubes.
    Carlson CG; Officer T
    Muscle Nerve; 1996 Sep; 19(9):1116-26. PubMed ID: 8761267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine receptor and calcium leakage activity in nondystrophic and dystrophic myotubes (MDX).
    Carlson CG
    Muscle Nerve; 1996 Oct; 19(10):1258-67. PubMed ID: 8808651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous changes in acetylcholine receptor and calcium leakage activity in cell-attached patches from cultured dystrophic myotubes.
    Carlson CG
    Pflugers Arch; 1999 Feb; 437(3):371-80. PubMed ID: 9914393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced acetylcholine-induced channel activity in dystrophic mouse myotubes.
    Grassi F; Cossu G; Eusebi F
    J Neurol Sci; 1988 Mar; 84(1):77-86. PubMed ID: 2452860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased endocytosis of acetylcholine receptors by dystrophic mouse myotubes in vitro.
    Cossu G; Eusebi F; Senni MI; Molinaro M
    Dev Biol; 1985 Aug; 110(2):362-8. PubMed ID: 4018404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes.
    Suchyna TM; Sachs F
    J Physiol; 2007 May; 581(Pt 1):369-87. PubMed ID: 17255168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholine-gated and chloride conductance channel expression in rat muscle membrane.
    Heathcote RD
    J Physiol; 1989 Jul; 414():473-97. PubMed ID: 2481727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice.
    Franco-Obregón A; Lansman JB
    J Neurosci Res; 1995 Nov; 42(4):452-8. PubMed ID: 8568931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced acetylcholine sensitivity in dystrophic mouse myotubes in vitro.
    Cossu G; Eusebi F; Molinaro M
    Muscle Nerve; 1984 Jan; 7(1):73-6. PubMed ID: 6700633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynaptic expression of the adult nicotinic acetylcholine receptor in long-term cultures of mammalian myotubes.
    Carlson CG; Feng Y
    Brain Res Dev Brain Res; 1993 Apr; 72(2):245-52. PubMed ID: 8485847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism.
    Bloch RJ
    J Cell Biol; 1979 Sep; 82(3):626-43. PubMed ID: 511929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of a myasthenic serum on the acetylcholine receptors of C2 myotubes. II. Functional inactivation of the receptor.
    Maricq AV; Gu Y; Hestrin S; Hall Z
    J Neurosci; 1985 Jul; 5(7):1917-24. PubMed ID: 2410577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice.
    Bakker AJ; Head SI; Williams DA; Stephenson DG
    J Physiol; 1993 Jan; 460():1-13. PubMed ID: 8487190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine activates two types of ion channels in sarcolemma from adult muscular dystrophic (mdx) mice.
    Költgen D; Franke C
    Neurosci Lett; 1992 Mar; 137(1):1-4. PubMed ID: 1320748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes.
    Alderton JM; Steinhardt RA
    J Biol Chem; 2000 Mar; 275(13):9452-60. PubMed ID: 10734092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers.
    Vandebrouck C; Martin D; Colson-Van Schoor M; Debaix H; Gailly P
    J Cell Biol; 2002 Sep; 158(6):1089-96. PubMed ID: 12235126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle.
    Hopf FW; Turner PR; Denetclaw WF; Reddy P; Steinhardt RA
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1325-39. PubMed ID: 8897840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ entry through acetylcholine receptor channel in dysgenic myotubes.
    Melliti K; Bournaud R; Shimahara T
    Arch Physiol Biochem; 1996; 104(1):57-61. PubMed ID: 8724881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased calcium influx in dystrophic muscle.
    Turner PR; Fong PY; Denetclaw WF; Steinhardt RA
    J Cell Biol; 1991 Dec; 115(6):1701-12. PubMed ID: 1661733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of acetylcholine receptor clusters in cultured rat myotubes is calcium dependent.
    Bursztajn S; McManaman JL; Appel SH
    J Cell Biol; 1984 Feb; 98(2):507-17. PubMed ID: 6693492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.