BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 8761459)

  • 21. Genes required for formation of the apoMoFe protein of Klebsiella pneumoniae nitrogenase in Escherichia coli.
    Harris GS; White TC; Flory JE; Orme-Johnson WH
    J Biol Chem; 1990 Sep; 265(26):15909-19. PubMed ID: 2203791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit.
    May HD; Dean DR; Newton WE
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):457-64. PubMed ID: 1650185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-temperature magnetic-circular-dichroism spectroscopy of the iron-molybdenum cofactor and the complementary cofactor-less MoFe protein of Klebsiella pneumoniae nitrogenase.
    Robinson AE; Richards AJ; Thomson AJ; Hawkes TR; Smith BE
    Biochem J; 1984 Apr; 219(2):495-503. PubMed ID: 6378176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein.
    Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy transduction by nitrogenase: binding of MgADP to the MoFe protein is dependent on the oxidation state of the iron-sulphur 'P' clusters.
    Miller RW; Smith BE; Eady RR
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):709-11. PubMed ID: 8489498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogenase of Klebsiella pneumoniae nifV mutants.
    McLean PA; Smith BE; Dixon RA
    Biochem J; 1983 Jun; 211(3):589-97. PubMed ID: 6349611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus.
    Siemann S; Schneider K; Oley M; Müller A
    Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Covalent modification of nitrogenase MoFe protein by ADP.
    Miller RW; Eady RR; Gormal C; Fairhurst SA; Smith BE
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):737-44. PubMed ID: 9148743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a form of the MoFe protein of nitrogenase that accepts electrons from the Fe protein but does not reduce substrate.
    Ma L; Brosius MA; Burgess BK
    J Biol Chem; 1996 May; 271(18):10528-32. PubMed ID: 8631851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic activities of NifEN: implications for nitrogenase evolution and mechanism.
    Hu Y; Yoshizawa JM; Fay AW; Lee CC; Wiig JA; Ribbe MW
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16962-6. PubMed ID: 19805110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of an iron-molybdenum cofactor from nitrogenase.
    Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3249-53. PubMed ID: 410019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction.
    Thorneley RN; Lowe DJ
    Biochem J; 1983 Nov; 215(2):393-403. PubMed ID: 6316927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.
    Durrant MC
    Biochem J; 2001 May; 355(Pt 3):569-76. PubMed ID: 11311117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers.
    Zimmermann R; Münck E; Brill WJ; Shah VK; Henzl MT; Rawlings J; Orme-Johnson WH
    Biochim Biophys Acta; 1978 Dec; 537(2):185-207. PubMed ID: 215215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nifH gene product is required for the synthesis or stability of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae.
    Filler WA; Kemp RM; Ng JC; Hawkes TR; Dixon RA; Smith BE
    Eur J Biochem; 1986 Oct; 160(2):371-7. PubMed ID: 3533537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.