These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8761667)
1. [Reactive oxygen species and defense mechanisms in marine bivalves]. Torreilles J; Guérin MC; Roch P C R Acad Sci III; 1996 Mar; 319(3):209-18. PubMed ID: 8761667 [TBL] [Abstract][Full Text] [Related]
2. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Canesi L; Gallo G; Gavioli M; Pruzzo C Microsc Res Tech; 2002 Jun; 57(6):469-76. PubMed ID: 12112429 [TBL] [Abstract][Full Text] [Related]
3. The effects of chlorothalonil on oyster hemocyte activation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen species production. Baier-Anderson C; Anderson RS Environ Res; 2000 May; 83(1):72-8. PubMed ID: 10845784 [TBL] [Abstract][Full Text] [Related]
4. Effect of acclimatization on hemocyte functional characteristics of the Pacific oyster (Crassostrea gigas) and carpet shell clam (Ruditapes decussatus). Hurtado MÁ; da Silva PM; Le Goïc N; Palacios E; Soudant P Fish Shellfish Immunol; 2011 Dec; 31(6):978-84. PubMed ID: 21906683 [TBL] [Abstract][Full Text] [Related]
5. In vitro activities in mussel hemocytes as biomarkers of environmental quality: a case study in the Abra Estuary (Biscay Bay). Cajaraville MP; Olabarrieta I; Marigomez I Ecotoxicol Environ Saf; 1996 Dec; 35(3):253-60. PubMed ID: 9007002 [TBL] [Abstract][Full Text] [Related]
6. Hemocyte-derived reactive oxygen intermediate production in four bivalve mollusks. Anderson RS Dev Comp Immunol; 1994; 18(2):89-96. PubMed ID: 8082818 [TBL] [Abstract][Full Text] [Related]
7. Differential production of active oxygen species in photo-symbiotic and non-symbiotic bivalves. Nakayama K; Maruyama T Dev Comp Immunol; 1998; 22(2):151-9. PubMed ID: 9639085 [TBL] [Abstract][Full Text] [Related]
8. Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Pereira LS; Oliveira PL; Barja-Fidalgo C; Daffre S Exp Parasitol; 2001 Oct; 99(2):66-72. PubMed ID: 11748959 [TBL] [Abstract][Full Text] [Related]
9. Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis. Donaghy L; Kim BK; Hong HK; Park HS; Choi KS Fish Shellfish Immunol; 2009 Aug; 27(2):296-301. PubMed ID: 19490941 [TBL] [Abstract][Full Text] [Related]
10. Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Buggé DM; Hégaret H; Wikfors GH; Allam B Fish Shellfish Immunol; 2007 Jul; 23(1):188-96. PubMed ID: 17137792 [TBL] [Abstract][Full Text] [Related]
11. Immunological responses of the mangrove oysters Crassostrea gasar naturally infected by Perkinsus sp. in the Mamanguape Estuary, Paraíba state (Northeastern, Brazil). Queiroga FR; Marques-Santos LF; Hégaret H; Soudant P; Farias ND; Schlindwein AD; Mirella da Silva P Fish Shellfish Immunol; 2013 Aug; 35(2):319-27. PubMed ID: 23664909 [TBL] [Abstract][Full Text] [Related]
12. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs. Donaghy L; Hong HK; Jauzein C; Choi KS Fish Shellfish Immunol; 2015 Jan; 42(1):91-7. PubMed ID: 25449373 [TBL] [Abstract][Full Text] [Related]
13. Comparative study on the hemocytes of subtropical oysters Saccostrea kegaki (Torigoe & Inaba, 1981), Ostrea circumpicta (Pilsbry, 1904), and Hyotissa hyotis (Linnaeus, 1758) in Jeju Island, Korea: morphology and functional aspects. Hong HK; Kang HS; Le TC; Choi KS Fish Shellfish Immunol; 2013 Dec; 35(6):2020-5. PubMed ID: 24121053 [TBL] [Abstract][Full Text] [Related]
14. Differential dynamics of dinophysistoxins and pectenotoxins between blue mussel and common cockle: a phenomenon originating from the complex toxin profile of Dinophysis acuta. Vale P Toxicon; 2004 Aug; 44(2):123-34. PubMed ID: 15246759 [TBL] [Abstract][Full Text] [Related]
15. Immune parameters of QX-resistant and wild caught Saccostrea glomerata hemocytes in relation to Marteilia sydneyi infection. Dang C; Lambert C; Soudant P; Delamare-Deboutteville J; Zhang MM; Chan J; Green TJ; Le Goïc N; Barnes AC Fish Shellfish Immunol; 2011 Dec; 31(6):1034-40. PubMed ID: 21925272 [TBL] [Abstract][Full Text] [Related]
16. Immunocompetence of bivalve hemocytes as evaluated by a miniaturized phagocytosis assay. Blaise C; Trottier S; Gagné F; Lallement C; Hansen PD Environ Toxicol; 2002; 17(3):160-9. PubMed ID: 12112624 [TBL] [Abstract][Full Text] [Related]
17. Short communication: ROS production and mitochondrial membrane potential in hemocytes of marine bivalves, Mytilus galloprovincialis and Magallana gigas, under hypoosmotic stress. Kladchenko ES; Tkachuk AA; Podolskaya MS; Andreyeva AY Comp Biochem Physiol B Biochem Mol Biol; 2024 Jan; 269():110901. PubMed ID: 37683884 [TBL] [Abstract][Full Text] [Related]
18. Effects of temperature on hard clam (Mercenaria mercenaria) immunity and QPX (Quahog Parasite Unknown) disease development: II. Defense parameters. Perrigault M; Dahl SF; Espinosa EP; Gambino L; Allam B J Invertebr Pathol; 2011 Feb; 106(2):322-32. PubMed ID: 21115017 [TBL] [Abstract][Full Text] [Related]
19. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France). Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396 [TBL] [Abstract][Full Text] [Related]
20. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families. García-García E; Prado-Alvarez M; Novoa B; Figueras A; Rosales C Dev Comp Immunol; 2008; 32(6):637-53. PubMed ID: 18045688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]