These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 8761739)

  • 21. Measurement of T1, T2, and magnetization transfer properties during embryonic development at 7 Tesla using the chicken model.
    Boss A; Oppitz M; Wehrl HF; Rossi C; Feuerstein M; Claussen CD; Drews U; Pichler BJ; Schick F
    J Magn Reson Imaging; 2008 Dec; 28(6):1510-4. PubMed ID: 19025957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Magnetic resonance in cardiology. The current clinical outlook].
    de Almeida AG; Vagueiro MC
    Rev Port Cardiol; 1998; 17(7-8):619-34. PubMed ID: 9741218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitation of galactosemic cataracts in dogs using magnetization transfer contrast-enhanced magnetic resonance imaging.
    Lizak MJ; Mori K; Ceckler TL; Balaban RS; Kador PF
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2219-27. PubMed ID: 8843908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear magnetic resonance imaging: methods and current status.
    Katims LM
    Med Instrum; 1982; 16(4):213-6. PubMed ID: 7132825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles.
    Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S
    Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short, shaped pulses in a large magnetic field gradient.
    Coarna C; Newling B
    J Magn Reson; 2009 Feb; 196(2):127-32. PubMed ID: 19038562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance imaging measurement of volume magnetic susceptibility using a boundary condition.
    Wang ZJ; Li S; Haselgrove JC
    J Magn Reson; 1999 Oct; 140(2):477-81. PubMed ID: 10497053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.
    Howseman AM; Bowtell RW
    Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1179-94. PubMed ID: 10466145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.
    Bidinosti CP; Kravchuk IS; Hayden ME
    J Magn Reson; 2005 Nov; 177(1):31-43. PubMed ID: 16099186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical principles of nuclear magnetic resonance imaging.
    Lerski RA
    Radiography; 1983 Apr; 49(580):85-90. PubMed ID: 6878643
    [No Abstract]   [Full Text] [Related]  

  • 32. Nuclear magnetic resonance imaging with 90-nm resolution.
    Mamin HJ; Poggio M; Degen CL; Rugar D
    Nat Nanotechnol; 2007 May; 2(5):301-6. PubMed ID: 18654288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basic principles of magnetic resonance imaging.
    Gibby WA
    Neurosurg Clin N Am; 2005 Jan; 16(1):1-64. PubMed ID: 15561528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance imaging: the basic physical and clinical concepts. Part II.
    Nelson TR; Ritenour ER; Davis K; Pretorius DH
    Radiol Technol; 1985; 57(1):26-30. PubMed ID: 4059529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic resonance imaging surrogates of multiple sclerosis pathology and their relationship to central nervous system atrophy.
    Meier DS; Weiner HL; Khoury SJ; Guttmann CR
    J Neuroimaging; 2004 Jul; 14(3 Suppl):46S-53S. PubMed ID: 15228759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance imaging of the orbit. Part I. Physical principles.
    Dortzbach RK; Kronish JW; Gentry LR
    Ophthalmic Plast Reconstr Surg; 1989; 5(3):151-9. PubMed ID: 2487214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basic physics of nuclear magnetic resonance.
    Patz S
    Cardiovasc Intervent Radiol; 1986; 8(5-6):225-37. PubMed ID: 3084086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E; Negri V; Soler-Padrós J; Cerdán S; Ballesteros P
    Eur J Radiol; 2008 Sep; 67(3):453-8. PubMed ID: 18455343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance molecular imaging contrast agents and their application in atherosclerosis.
    Mulder WJ; Strijkers GJ; Vucic E; Cormode DP; Nicolay K; Fayad ZA
    Top Magn Reson Imaging; 2007 Oct; 18(5):409-17. PubMed ID: 18025995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.