These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8763402)

  • 1. Intracellular pH and intrinsic H+ buffering capacity in normal and hypertrophied right ventricle of ferret heart.
    Do E; Ellis D; Noireaud J
    Cardiovasc Res; 1996 May; 31(5):729-38. PubMed ID: 8763402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular pH during hypoxia in normal and hypertrophied right ventricle of ferret heart.
    Do E; Baudet S; Gow IF; Ellis D; Noireaud J
    J Mol Cell Cardiol; 1995 Mar; 27(3):927-39. PubMed ID: 7602610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular pH in the perfused heart by external HCO3- and Na(+)-H+ exchange.
    Grace AA; Kirschenlohr HL; Metcalfe JC; Smith GA; Weissberg PL; Cragoe EJ; Vandenberg JI
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H289-98. PubMed ID: 8393626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery.
    Ellis D; Noireaud J
    J Physiol; 1987 Feb; 383():125-41. PubMed ID: 3656122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased resistance to acute respiratory acidosis in isolated cardiac muscle following chronic hypoxia-induced hypertrophy.
    Neville E; Bateman NT; Ward JP
    Cardiovasc Res; 1996 May; 31(5):739-46. PubMed ID: 8763403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH dependence of intrinsic H+ buffering power in the sheep cardiac Purkinje fibre.
    Vaughan-Jones RD; Wu ML
    J Physiol; 1990 Jun; 425():429-48. PubMed ID: 2170631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH regulation in ferret ventricular muscle. The role of Na-H exchange and the influence of metabolic substrates.
    Blatter LA; McGuigan JA
    Circ Res; 1991 Jan; 68(1):150-61. PubMed ID: 1845852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.
    J Physiol; 1977 Jun; 267(3):791-810. PubMed ID: 17740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH recovery during respiratory acidosis in perfused hearts.
    Vandenberg JI; Metcalfe JC; Grace AA
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C489-97. PubMed ID: 8141263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of intracellular pH transients in single ventricular myocytes and isolated ventricular muscle of guinea-pig.
    Bountra C; Powell T; Vaughan-Jones RD
    J Physiol; 1990 May; 424():343-65. PubMed ID: 2167972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular pH regulation in papillary muscle cells from streptozotocin diabetic rats: an ion-sensitive microelectrode study.
    Lagadic-Gossmann D; Chesnais JM; Feuvray D
    Pflugers Arch; 1988 Oct; 412(6):613-7. PubMed ID: 2850534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of Na+-H+ exchange, Na+-HCO3- co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes.
    Ch'en FF; Dilworth E; Swietach P; Goddard RS; Vaughan-Jones RD
    J Physiol; 2003 Nov; 552(Pt 3):715-26. PubMed ID: 12923205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of pHi recovery after global ischemia in the perfused heart.
    Vandenberg JI; Metcalfe JC; Grace AA
    Circ Res; 1993 May; 72(5):993-1003. PubMed ID: 8386598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of H+ extrusion via Na(+)-H+ exchange in guinea-pig ventricular papillary muscle under intracellular acidic condition.
    Hotokebuchi N; Yano T; Takeshita T; Nishi K
    Jpn J Physiol; 1991; 41(3):369-84. PubMed ID: 1660088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3- mechanisms.
    Little PJ; Neylon CB; Farrelly CA; Weissberg PL; Cragoe EJ; Bobik A
    Cardiovasc Res; 1995 Feb; 29(2):239-46. PubMed ID: 7736501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. I. Na+/H+ exchange in the absence and presence of HCO3-.
    Bonanno JA; Giasson C
    Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3058-67. PubMed ID: 1328110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of surface pH on intracellular pH regulation in cardiac and skeletal muscle.
    Vanheel B; de Hemptinne A; Leusen I
    Am J Physiol; 1986 May; 250(5 Pt 1):C748-60. PubMed ID: 3085512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte.
    Leem CH; Lagadic-Gossmann D; Vaughan-Jones RD
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):159-80. PubMed ID: 10226157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased sensitivity of contraction to changes of intracellular pH in papillary muscle from diabetic rat hearts.
    Lagadic-Gossmann D; Feuvray D
    J Physiol; 1990 Mar; 422():481-97. PubMed ID: 2352189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidification and intracellular sodium ion activity during stimulated myocardial ischemia.
    Vanheel B; de Hemptinne A; Leusen I
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C169-79. PubMed ID: 2164781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.