These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8763922)

  • 1. Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(14):3991-5. PubMed ID: 8763922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of basic amino acids by membrane vesicles of Lactococcus lactis.
    Driessen AJ; van Leeuwen C; Konings WN
    J Bacteriol; 1989 Mar; 171(3):1453-8. PubMed ID: 2537818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    Eur J Biochem; 1994 Sep; 224(2):581-7. PubMed ID: 7925375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfate transport in Penicillium chrysogenum plasma membranes.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(13):3953-6. PubMed ID: 8682803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the general amino acid permease of Penicillium chrysogenum by transinhibition and turnover.
    Hunter DR; Segel IH
    Arch Biochem Biophys; 1973 Jan; 154(1):387-99. PubMed ID: 4632118
    [No Abstract]   [Full Text] [Related]  

  • 8. Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1.
    Opekarová M; Caspari T; Tanner W
    Eur J Biochem; 1993 Feb; 211(3):683-8. PubMed ID: 8436127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum.
    Driessen AJ; Ubbink-Kok T; Konings WN
    J Bacteriol; 1988 Feb; 170(2):817-20. PubMed ID: 2828326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport.
    Foucaud C; Poolman B
    J Biol Chem; 1992 Nov; 267(31):22087-94. PubMed ID: 1429561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus.
    Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J
    J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The specific transport system for lysine is fully inhibited by ammonium in Penicillium chrysogenum: an ammonium-insensitive system allows uptake in carbon-starved cells.
    Bañuelos O; Casqueiro J; Gutiérrez S; Riaño J; Martín JF
    Antonie Van Leeuwenhoek; 2000 Jan; 77(1):91-100. PubMed ID: 10696883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris.
    Driessen AJ; de Vrij W; Konings WN
    Eur J Biochem; 1986 Feb; 154(3):617-24. PubMed ID: 3004984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic and basic amino acid transport systems of Penicillium chrysogenum.
    Hunter DR; Segel IH
    Arch Biochem Biophys; 1971 May; 144(1):168-83. PubMed ID: 5117525
    [No Abstract]   [Full Text] [Related]  

  • 18. Cloning of a cDNA coding for an amino acid carrier from Ricinus communis (RcAAP1) by functional complementation in yeast: kinetic analysis, inhibitor sensitivity and substrate specificity.
    Marvier AC; Neelam A; Bick JA; Hall JL; Williams LE
    Biochim Biophys Acta; 1998 Sep; 1373(2):321-31. PubMed ID: 9733991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of L-arginine uptake by plasma membrane vesicles isolated from cultured pulmonary artery endothelial cells.
    Zharikov SI; Block ER
    Biochim Biophys Acta; 1998 Feb; 1369(1):173-83. PubMed ID: 9528685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient.
    Speelmans G; Poolman B; Konings WN
    J Bacteriol; 1993 Apr; 175(7):2060-6. PubMed ID: 8096211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.