BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 8763924)

  • 1. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein.
    Tojo N; Sanmiya K; Sugawara H; Inouye S; Komano T
    J Bacteriol; 1996 Jul; 178(14):4004-11. PubMed ID: 8763924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The IntP C-terminal segment is not required for excision of bacteriophage Mx8 from the Myxococcus xanthus chromosome.
    Tojo N; Komano T
    J Bacteriol; 2003 Apr; 185(7):2187-93. PubMed ID: 12644488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification.
    Magrini V; Storms ML; Youderian P
    J Bacteriol; 1999 Jul; 181(13):4062-70. PubMed ID: 10383975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the shufflon in plasmid R64.
    Gyohda A; Furuya N; Ishiwa A; Zhu S; Komano T
    Adv Biophys; 2004; 38():183-213. PubMed ID: 15493334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific recombination of temperate Myxococcus xanthus phage Mx8: genetic elements required for integration.
    Magrini V; Creighton C; Youderian P
    J Bacteriol; 1999 Jul; 181(13):4050-61. PubMed ID: 10383974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the integrase gene and attachment site for the Myxococcus xanthus bacteriophage Mx9.
    Julien B
    J Bacteriol; 2003 Nov; 185(21):6325-30. PubMed ID: 14563867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic determinants of immunity and integration of temperate Myxococcus xanthus phage Mx8.
    Salmi D; Magrini V; Hartzell PL; Youderian P
    J Bacteriol; 1998 Feb; 180(3):614-21. PubMed ID: 9457865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperate Myxococcus xanthus phage Mx8 encodes a DNA adenine methylase, Mox.
    Magrini V; Salmi D; Thomas D; Herbert SK; Hartzell PL; Youderian P
    J Bacteriol; 1997 Jul; 179(13):4254-63. PubMed ID: 9209041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the shufflon in plasmid r64.
    Gyohda A; Furuya N; Ishiwa A; Zhu S; Komano T
    Adv Biophys; 2004; 38(Complete):183-213. PubMed ID: 15476899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and physical characterization of lysogeny by bacteriophage MX8 in Myxococcus xanthus.
    Orndorff P; Stellwag E; Starich T; Dworkin M; Zissler J
    J Bacteriol; 1983 May; 154(2):772-9. PubMed ID: 6404885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage phi LC3 and construction of integration-negative phi LC3 mutants.
    Lillehaug D; Birkeland NK
    J Bacteriol; 1993 Mar; 175(6):1745-55. PubMed ID: 8449882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family.
    Thorpe HM; Smith MC
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5505-10. PubMed ID: 9576912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector.
    Van Mellaert L; Mei L; Lammertyn E; Schacht S; Ann J
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3351-3358. PubMed ID: 9884227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites.
    Yu A; Bertani LE; Haggård-Ljungquist E
    Gene; 1989 Aug; 80(1):1-11. PubMed ID: 2676729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus" C70.
    Le Marrec C; Moreau S; Loury S; Blanco C; Trautwetter A
    J Bacteriol; 1996 Apr; 178(7):1996-2004. PubMed ID: 8606175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the binding sites of two proteins involved in the bacteriophage P2 site-specific recombination system.
    Yu A; Haggård-Ljungquist E
    J Bacteriol; 1993 Mar; 175(5):1239-49. PubMed ID: 8444786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific integration of corynephage phi16: construction of an integration vector.
    Moreau S; Blanco C; Trautwetter A
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():539-548. PubMed ID: 10217487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro characterization of site-specific recombination of actinophage R4 integrase.
    Miura T; Hosaka Y; Yan-Zhuo Y; Nishizawa T; Asayama M; Takahashi H; Shirai M
    J Gen Appl Microbiol; 2011; 57(1):45-57. PubMed ID: 21478647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans.
    Brown DP; Idler KB; Backer DM; Donadio S; Katz L
    Mol Gen Genet; 1994 Jan; 242(2):185-93. PubMed ID: 8159169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration into the phage attachment site, attB, impairs multicellular differentiation in Stigmatella aurantiaca.
    Müller S; Shen H; Hofmann D; Schairer HU; Kirby JR
    J Bacteriol; 2006 Mar; 188(5):1701-9. PubMed ID: 16484181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.