BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 8763950)

  • 1. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli.
    Zhu X; Amsler CD; Volz K; Matsumura P
    J Bacteriol; 1996 Jul; 178(14):4208-15. PubMed ID: 8763950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet.
    Appleby JL; Bourret RB
    J Bacteriol; 1998 Jul; 180(14):3563-9. PubMed ID: 9657998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY.
    Bourret RB; Hess JF; Simon MI
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):41-5. PubMed ID: 2404281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CheZ-mediated dephosphorylation of the Escherichia coli chemotaxis response regulator CheY: role for CheY glutamate 89.
    Silversmith RE; Guanga GP; Betts L; Chu C; Zhao R; Bourret RB
    J Bacteriol; 2003 Mar; 185(5):1495-502. PubMed ID: 12591865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ.
    Sanna MG; Swanson RV; Bourret RB; Simon MI
    Mol Microbiol; 1995 Mar; 15(6):1069-79. PubMed ID: 7623663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106.
    Zhu X; Rebello J; Matsumura P; Volz K
    J Biol Chem; 1997 Feb; 272(8):5000-6. PubMed ID: 9030562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellar motor-switch binding face of CheY and the biochemical basis of suppression by CheY mutants that compensate for motor-switch defects in Escherichia coli.
    Shukla D; Zhu XY; Matsumura P
    J Biol Chem; 1998 Sep; 273(37):23993-9. PubMed ID: 9727015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an anchor residue for CheA-CheY interactions in the chemotaxis system of Escherichia coli.
    Thakor H; Nicholas S; Porter IM; Hand N; Stewart RC
    J Bacteriol; 2011 Aug; 193(15):3894-903. PubMed ID: 21642453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of chemotactic signal amplification in Escherichia coli.
    Kim C; Jackson M; Lux R; Khan S
    J Mol Biol; 2001 Mar; 307(1):119-35. PubMed ID: 11243808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated switch binding and signaling in bacterial chemotaxis.
    Schuster M; Zhao R; Bourret RB; Collins EJ
    J Biol Chem; 2000 Jun; 275(26):19752-8. PubMed ID: 10748173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM.
    Welch M; Oosawa K; Aizawa SI; Eisenbach M
    Biochemistry; 1994 Aug; 33(34):10470-6. PubMed ID: 8068685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain.
    Stewart RC; Jahreis K; Parkinson JS
    Biochemistry; 2000 Oct; 39(43):13157-65. PubMed ID: 11052668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY.
    Li R; Gu J; Chen YY; Xiao CL; Wang LW; Zhang ZP; Bi LJ; Wei HP; Wang XD; Deng JY; Zhang XE
    Mol Microbiol; 2010 Jun; 76(5):1162-74. PubMed ID: 20345663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotactic response regulator mutant CheY95IV exhibits enhanced binding to the flagellar switch and phosphorylation-dependent constitutive signalling.
    Schuster M; Abouhamad WN; Silversmith RE; Bourret RB
    Mol Microbiol; 1998 Mar; 27(5):1065-75. PubMed ID: 9535095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the constitutively active double mutant CheYD13K Y106W alone and in complex with a FliM peptide.
    Dyer CM; Quillin ML; Campos A; Lu J; McEvoy MM; Hausrath AC; Westbrook EM; Matsumura P; Matthews BW; Dahlquist FW
    J Mol Biol; 2004 Sep; 342(4):1325-35. PubMed ID: 15351654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides.
    McAdams K; Casper ES; Matthew Haas R; Santarsiero BD; Eggler AL; Mesecar A; Halkides CJ
    Arch Biochem Biophys; 2008 Nov; 479(2):105-13. PubMed ID: 18801331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the role of electrostatic charge in activation of the Escherichia coli response regulator CheY.
    Smith JG; Latiolais JA; Guanga GP; Citineni S; Silversmith RE; Bourret RB
    J Bacteriol; 2003 Nov; 185(21):6385-91. PubMed ID: 14563873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli.
    Lux R; Jahreis K; Bettenbrock K; Parkinson JS; Lengeler JW
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11583-7. PubMed ID: 8524808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational coupling in the chemotaxis response regulator CheY.
    Schuster M; Silversmith RE; Bourret RB
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6003-8. PubMed ID: 11353835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CheZ-binding surface of CheY overlaps the CheA- and FliM-binding surfaces.
    Zhu X; Volz K; Matsumura P
    J Biol Chem; 1997 Sep; 272(38):23758-64. PubMed ID: 9295320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.