These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8763964)

  • 21. The pterin molybdenum cofactors.
    Rajagopalan KV; Johnson JL
    J Biol Chem; 1992 May; 267(15):10199-202. PubMed ID: 1587808
    [No Abstract]   [Full Text] [Related]  

  • 22. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans.
    Millar LJ; Heck IS; Sloan J; Kana'n GJ; Kinghorn JR; Unkles SE
    Mol Genet Genomics; 2001 Nov; 266(3):445-53. PubMed ID: 11713674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molybdenum co-factor biosynthesis: the Arabidopsis thaliana cDNA cnx1 encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein Cinnamon and three Escherichia coli proteins.
    Stallmeyer B; Nerlich A; Schiemann J; Brinkmann H; Mendel RR
    Plant J; 1995 Nov; 8(5):751-62. PubMed ID: 8528286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molybdopterin--problems and perspectives.
    Rajagopalan KV
    Biofactors; 1988 Dec; 1(4):273-8. PubMed ID: 3076443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization.
    Kuper J; Palmer T; Mendel RR; Schwarz G
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6475-80. PubMed ID: 10823911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli.
    Palmer T; Vasishta A; Whitty PW; Boxer DH
    Eur J Biochem; 1994 Jun; 222(2):687-92. PubMed ID: 8020507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The functional principle of eukaryotic molybdenum insertases.
    Krausze J; Hercher TW; Zwerschke D; Kirk ML; Blankenfeldt W; Mendel RR; Kruse T
    Biochem J; 2018 May; 475(10):1739-1753. PubMed ID: 29717023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.
    Hoffmann MC; Ali K; Sonnenschein M; Robrahn L; Strauss D; Narberhaus F; Masepohl B
    Mol Microbiol; 2016 Sep; 101(5):809-22. PubMed ID: 27196733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of two Arabidopsis cDNAs involved in early steps of molybdenum cofactor biosynthesis by functional complementation of Escherichia coli mutants.
    Hoff T; Schnorr KM; Meyer C; Caboche M
    J Biol Chem; 1995 Mar; 270(11):6100-7. PubMed ID: 7890743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
    Iobbi-Nivol C; Leimkühler S
    Biochim Biophys Acta; 2013; 1827(8-9):1086-101. PubMed ID: 23201473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molybdopterin from molybdenum and tungsten enzymes.
    Schindelin H; Kisker C; Rajagopalan KV
    Adv Protein Chem; 2001; 58():47-94. PubMed ID: 11665493
    [No Abstract]   [Full Text] [Related]  

  • 34. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli.
    Rosentel JK; Healy F; Maupin-Furlow JA; Lee JH; Shanmugam KT
    J Bacteriol; 1995 Sep; 177(17):4857-64. PubMed ID: 7665461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of thieno[3,2-g]pterines from the molybdenum cofactor.
    Ishizuka M; Ushio K; Toraya T; Fukui S
    Biochem Biophys Res Commun; 1983 Mar; 111(2):537-43. PubMed ID: 6340673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearrangement reactions in the biosynthesis of molybdopterin--an NMR study with multiply 13C/15N labelled precursors.
    Rieder C; Eisenreich W; O'Brien J; Richter G; Götze E; Boyle P; Blanchard S; Bacher A; Simon H
    Eur J Biochem; 1998 Jul; 255(1):24-36. PubMed ID: 9692897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defective molybdopterin biosynthesis: clinical heterogeneity associated with molybdenum cofactor deficiency.
    Mize C; Johnson JL; Rajagopalan KV
    J Inherit Metab Dis; 1995; 18(3):283-90. PubMed ID: 7474893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molybdate-uptake genes and molybdopterin-biosynthesis genes on a bacterial plasmid--characterization of MoeA as a filament-forming protein with adenosinetriphosphatase activity.
    Menéndez C; Otto A; Igloi G; Nick P; Brandsch R; Schubach B; Böttcher B; Brandsch R
    Eur J Biochem; 1997 Dec; 250(2):524-31. PubMed ID: 9428706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molybdenum cofactor biosynthesis. The plant protein Cnx1 binds molybdopterin with high affinity.
    Schwarz G; Boxer DH; Mendel RR
    J Biol Chem; 1997 Oct; 272(43):26811-4. PubMed ID: 9341109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.
    Miller JB; Amy NK
    J Bacteriol; 1983 Aug; 155(2):793-801. PubMed ID: 6307982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.