BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8764130)

  • 1. Semiautomated assessment of loss of heterozygosity and replication error in tumors.
    Canzian F; Salovaara R; Hemminki A; Kristo P; Chadwick RB; Aaltonen LA; de la Chapelle A
    Cancer Res; 1996 Jul; 56(14):3331-7. PubMed ID: 8764130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RER and LOH association with sporadic colorectal cancer in Taiwanese patients.
    Tsai MH; Yang YC; Chen KH; Jiang JK; Chou SJ; Chiang TC; Jan HS; Lou MA
    Hepatogastroenterology; 2002; 49(45):672-7. PubMed ID: 12063967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiautomated quantitative detection of loss of heterozygosity in the tumor suppressor gene p53.
    Hahn M; Matzen SE; Serth J; Pingoud A
    Biotechniques; 1995 Jun; 18(6):1040-7. PubMed ID: 7546705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and nonisotopic SSCP-based analysis of the BAT-26 mononucleotide repeat for identification of the replication error phenotype in human cancers.
    Iacopetta B; Hamelin R
    Hum Mutat; 1998; 12(5):355-60. PubMed ID: 9792412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of rapid microsatellite analysis of paraffin-embedded specimens in screening for hereditary nonpolyposis colorectal cancer.
    Raedle J; Brieger A; Trojan J; Hardt T; Herrmann G; Zeuzem S
    Mod Pathol; 1999 May; 12(5):485-91. PubMed ID: 10349986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication error in human breast cancer: comparison with clinical variables and family history of cancer.
    Huiping C; Johannsdottir JT; Arason A; Olafsdottir GH; Eiriksdottir G; Egilsson V; Ingvarsson S
    Oncol Rep; 1999; 6(1):117-22. PubMed ID: 9864413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [p53 mutations in sporadic colorectal cancers with microsatellite instability].
    Huang J; Zheng S; Pan QR; Deng YC
    Zhonghua Yi Xue Za Zhi; 2003 Jul; 83(13):1130-3. PubMed ID: 12921629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrequent inactivation of DCC gene in replication error-positive colorectal cancers.
    Yamamoto H; Itoh F; Kusano M; Yoshida Y; Hinoda Y; Imai K
    Biochem Biophys Res Commun; 1998 Mar; 244(1):204-9. PubMed ID: 9514909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.
    Hoang JM; Cottu PH; Thuille B; Salmon RJ; Thomas G; Hamelin R
    Cancer Res; 1997 Jan; 57(2):300-3. PubMed ID: 9000572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer.
    Tomlinson I; Ilyas M; Johnson V; Davies A; Clark G; Talbot I; Bodmer W
    J Pathol; 1998 Feb; 184(2):148-52. PubMed ID: 9602705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of microsatellite alteration in colorectal cancer].
    Mizunuma H; Takita K; Ooki S; Onda M; Ando Y; Yoshida T; Tsuchiya A; Abe R
    Gan To Kagaku Ryoho; 1998 Apr; 25 Suppl 3():443-9. PubMed ID: 9589050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of replication error (RER+) phenotypes in cervical carcinoma.
    Larson AA; Kern S; Sommers RL; Yokota J; Cavenee WK; Hampton GM
    Cancer Res; 1996 Mar; 56(6):1426-31. PubMed ID: 8640835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allelic loss is heterogeneous throughout the tumor in colorectal carcinoma.
    Lindforss U; Fredholm H; Papadogiannakis N; Gad A; Zetterquist H; Olivecrona H
    Cancer; 2000 Jun; 88(12):2661-7. PubMed ID: 10870047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinicopathologic and carcinogenetic appraisal of DNA replication error in sporadic T3N0M0 stage colorectal cancer after curative resection.
    Liang JT; Chang KJ; Chen JC; Lee CC; Cheng YM; Hsu HC; Chien CT; Wang SM
    Hepatogastroenterology; 1999; 46(26):883-90. PubMed ID: 10370632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive detection of loss of heterozygosity in the TP53 gene in pancreatic adenocarcinoma by fluorescence-based single-strand conformation polymorphism analysis using blunt-end DNA fragments.
    Sugano K; Nakashima Y; Yamaguchi K; Fukayama N; Maekawa M; Ohkura H; Kakizoe T; Sekiya T
    Genes Chromosomes Cancer; 1996 Mar; 15(3):157-64. PubMed ID: 8721679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P53 mutations in colorectal cancer assessed in both genomic DNA and cDNA as compared to the presence of p53 LOH.
    Forslund A; Kressner U; Lönnroth C; Andersson M; Lindmark G; Lundholm K
    Int J Oncol; 2002 Aug; 21(2):409-15. PubMed ID: 12118339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status of the DPC4 tumor suppressor gene in sporadic colon adenocarcinoma of Croatian patients: identification of a novel somatic mutation.
    Popović Hadzija M; Radosevic S; Kovacević D; Lukac J; Hadzija M; Spaventi R; Pavelić K; Kapitanović S
    Mutat Res; 2004 Apr; 548(1-2):61-73. PubMed ID: 15063137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative microsatellite analysis of colorectal cancer in patients <35 years and >50 years of age.
    Naidoo R; Tarin M; Chetty R
    Am J Gastroenterol; 2000 Nov; 95(11):3266-75. PubMed ID: 11095352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A detection for replication error (RER) and LOH by microsatellite analysis in human lung cancer].
    Hadama T; Kinoshita M
    Nihon Rinsho; 1996 Feb; 54(2):487-91. PubMed ID: 8838102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Detailed mapping and clinical significance of loss of heterozygosity on 9p13-23 in laryngeal squamous cell carcinoma by microsatellite analysis].
    Xu XF; Tang PZ; Cheng SJ
    Ai Zheng; 2003 May; 22(5):452-7. PubMed ID: 12753701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.