BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8764170)

  • 1. A novel preparation of dissociated renal proximal tubule cells that maintain epithelial polarity in suspension.
    Segal AS; Boulpaep EL; Maunsbach AB
    Am J Physiol; 1996 Jun; 270(6 Pt 1):C1843-63. PubMed ID: 8764170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation of structural and functional polarity in isolated epithelial cells.
    Torres RJ; Altenberg GA; Copello JA; Zampighi G; Reuss L
    Am J Physiol; 1996 Jun; 270(6 Pt 1):C1864-74. PubMed ID: 8764171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes.
    Terryn S; Jouret F; Vandenabeele F; Smolders I; Moreels M; Devuyst O; Steels P; Van Kerkhove E
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F476-85. PubMed ID: 17475898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton.
    Molitoris BA
    Am J Physiol; 1991 Jun; 260(6 Pt 2):F769-78. PubMed ID: 2058700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single channel recordings from basolateral and apical membranes of renal proximal tubules.
    Gögelein H; Greger R
    Pflugers Arch; 1984 Aug; 401(4):424-6. PubMed ID: 6091026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells.
    Elkjaer ML; Birn H; Agre P; Christensen EI; Nielsen S
    Eur J Cell Biol; 1995 May; 67(1):57-72. PubMed ID: 7543847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells.
    Orosz DE; Woost PG; Kolb RJ; Finesilver MB; Jin W; Frisa PS; Choo CK; Yau CF; Chan KW; Resnick MI; Douglas JG; Edwards JC; Jacobberger JW; Hopfer U
    In Vitro Cell Dev Biol Anim; 2004; 40(1-2):22-34. PubMed ID: 14748622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the membrane-cytoskeleton in the spatial organization of the Na,K-ATPase in polarized epithelial cells.
    Nelson WJ; Hammerton RW; McNeill H
    Soc Gen Physiol Ser; 1991; 46():77-87. PubMed ID: 1653995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia.
    Molitoris BA; Dahl R; Geerdes A
    Am J Physiol; 1992 Sep; 263(3 Pt 2):F488-95. PubMed ID: 1329535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized expression of cAMP-activated chloride channels in isolated epithelial cells.
    Torres RJ; Altenberg GA; Cohn JA; Reuss L
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1574-82. PubMed ID: 8944641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kidney cortex cells derived from SV40 transgenic mice retain intrinsic properties of polarized proximal tubule cells.
    Chalumeau C; Lamblin D; Bourgeois S; Borensztein P; Chambrey R; Bruneval P; Huyen JP; Froissart M; Biber J; Paillard M; Kellermann O; Poggioli J
    Kidney Int; 1999 Aug; 56(2):559-70. PubMed ID: 10432395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of hepatic cell polarity in the rat hepatoma-human fibroblast hybrid WIF-B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one.
    Decaens C; Rodriguez P; Bouchaud C; Cassio D
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1623-35. PubMed ID: 8799849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption.
    Musch MW; Walsh-Reitz MM; Chang EB
    Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G222-31. PubMed ID: 16239402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polarized salivary cell monolayer useful for studying transepithelial fluid movement in vitro.
    He X; Kuijpers GA; Goping G; Kulakusky JA; Zheng C; Delporte C; Tse CM; Redman RS; Donowitz M; Pollard HB; Baum BJ
    Pflugers Arch; 1998 Feb; 435(3):375-81. PubMed ID: 9426293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of renal proximal tubule basolateral potassium channels.
    Sackin H
    Prog Clin Biol Res; 1990; 334():231-49. PubMed ID: 2408069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence from incorporation and patch-clamp experiments for a nonselective channel of large conductance at the luminal membrane of rabbit proximal tubule.
    Bellemare F; Dubé L; Sauvé R
    Can J Physiol Pharmacol; 1996 Mar; 74(3):265-72. PubMed ID: 8773405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apico-basal polarity in polycystic kidney disease epithelia.
    Wilson PD
    Biochim Biophys Acta; 2011 Oct; 1812(10):1239-48. PubMed ID: 21658447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell membrane water permeabilities and streaming currents in Ambystoma proximal tubule.
    Tripathi S; Boulpaep EL
    Am J Physiol; 1988 Jul; 255(1 Pt 2):F188-203. PubMed ID: 3394810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus.
    Maunsbach AB; Boulpaep EL
    Am J Physiol; 1984 May; 246(5 Pt 2):F710-24. PubMed ID: 6720973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-K(+)-ATPase that redistributes to apical membrane during ATP depletion remains functional.
    Molitoris BA
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F693-7. PubMed ID: 8238549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.