These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8764591)

  • 1. N-linked oligosaccharides are required for cell surface expression of the norepinephrine transporter but do not influence substrate or inhibitor recognition.
    Nguyen TT; Amara SG
    J Neurochem; 1996 Aug; 67(2):645-55. PubMed ID: 8764591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition.
    Melikian HE; Ramamoorthy S; Tate CG; Blakely RD
    Mol Pharmacol; 1996 Aug; 50(2):266-76. PubMed ID: 8700133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human norepinephrine transporter. Biosynthetic studies using a site-directed polyclonal antibody.
    Melikian HE; McDonald JK; Gu H; Rudnick G; Moore KR; Blakely RD
    J Biol Chem; 1994 Apr; 269(16):12290-7. PubMed ID: 8163533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins.
    Apparsundaram S; Schroeter S; Giovanetti E; Blakely RD
    J Pharmacol Exp Ther; 1998 Nov; 287(2):744-51. PubMed ID: 9808705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis, N-glycosylation, and surface trafficking of biogenic amine transporter proteins.
    Ramamoorthy S; Melikian HE; Qian Y; Blakely RD
    Methods Enzymol; 1998; 296():347-70. PubMed ID: 9779460
    [No Abstract]   [Full Text] [Related]  

  • 6. The Role of N-Glycosylation in Maintaining the Transporter Activity and Expression of Human Oligopeptide Transporter 1.
    Chan T; Lu X; Shams T; Zhu L; Murray M; Zhou F
    Mol Pharm; 2016 Oct; 13(10):3449-3456. PubMed ID: 27547863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular physiology of norepinephrine and serotonin transporters.
    Blakely RD; De Felice LJ; Hartzell HC
    J Exp Biol; 1994 Nov; 196():263-81. PubMed ID: 7823027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeation and gating residues in serotonin transporter.
    Chen JG; Rudnick G
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1044-9. PubMed ID: 10655481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux.
    Wall SC; Gu H; Rudnick G
    Mol Pharmacol; 1995 Mar; 47(3):544-50. PubMed ID: 7700252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antipeptide antibodies confirm the topology of the human norepinephrine transporter.
    Brüss M; Hammermann R; Brimijoin S; Bönisch H
    J Biol Chem; 1995 Apr; 270(16):9197-201. PubMed ID: 7721836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences of homo- but not hetero-oligomerization between transporters for the biogenic amine neurotransmitters.
    Kocabas AM; Rudnick G; Kilic F
    J Neurochem; 2003 Jun; 85(6):1513-20. PubMed ID: 12787070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute regulation of norepinephrine transport: I. protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells.
    Apparsundaram S; Galli A; DeFelice LJ; Hartzell HC; Blakely RD
    J Pharmacol Exp Ther; 1998 Nov; 287(2):733-43. PubMed ID: 9808704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of serine mutations in transmembrane domain 7 of the human norepinephrine transporter on substrate binding and transport.
    Danek Burgess KS; Justice JB
    J Neurochem; 1999 Aug; 73(2):656-64. PubMed ID: 10428062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the membrane domain of the human liver sodium/bile acid cotransporter.
    Hallén S; Mareninova O; Brändén M; Sachs G
    Biochemistry; 2002 Jun; 41(23):7253-66. PubMed ID: 12044156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation of a vesicular monoamine transporter: a mutation in a conserved proline residue affects the activity, glycosylation, and localization of the transporter.
    Yelin R; Steiner-Mordoch S; Aroeti B; Schuldiner S
    J Neurochem; 1998 Dec; 71(6):2518-27. PubMed ID: 9832151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delineation of an endogenous zinc-binding site in the human dopamine transporter.
    Norregaard L; Frederiksen D; Nielsen EO; Gether U
    EMBO J; 1998 Aug; 17(15):4266-73. PubMed ID: 9687495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of glycosylation in the organic anion transporter OAT1.
    Tanaka K; Xu W; Zhou F; You G
    J Biol Chem; 2004 Apr; 279(15):14961-6. PubMed ID: 14749323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a single amino acid, phenylalanine 586, that is responsible for high affinity interactions of tricyclic antidepressants with the human serotonin transporter.
    Barker EL; Blakely RD
    Mol Pharmacol; 1996 Oct; 50(4):957-65. PubMed ID: 8863842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2.
    Fei YJ; Liu W; Prasad PD; Kekuda R; Oblak TG; Ganapathy V; Leibach FH
    Biochemistry; 1997 Jan; 36(2):452-60. PubMed ID: 9003198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NH(2)-terminus of norepinephrine transporter contains a basolateral localization signal for epithelial cells.
    Gu HH; Wu X; Giros B; Caron MG; Caplan MJ; Rudnick G
    Mol Biol Cell; 2001 Dec; 12(12):3797-807. PubMed ID: 11739781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.