These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8765083)

  • 1. Enhanced excretion of intermediates of aromatic amino acid catabolism during chlorophenol degradation due to nutrient limitation in the yeast Candida maltosa.
    Hammer E; Kneifel H; Hofmann K; Schauer F
    J Basic Microbiol; 1996; 36(4):239-43. PubMed ID: 8765083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization.
    Krug M; Ziegler H; Straube G
    J Basic Microbiol; 1985; 25(2):103-10. PubMed ID: 4009428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa.
    Polnisch E; Kneifel H; Franzke H; Hofmann KH
    Biodegradation; 1991-1992; 2(3):193-9. PubMed ID: 1368963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism.
    Smith EA; Macfarlane GT
    J Appl Bacteriol; 1996 Sep; 81(3):288-302. PubMed ID: 8810056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts].
    Ivoĭlov VS; Karasevich IuN
    Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruminal biosynthesis of aromatic amino acids from arylacetic acids, glucose, shikimic acid and phenol.
    Kristensen S
    Br J Nutr; 1974 May; 31(3):357-65. PubMed ID: 4835789
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of aromatic compounds by Trichosporon sp.
    Caselli L; Hanau S
    Boll Soc Ital Biol Sper; 1994 Apr; 70(4):83-8. PubMed ID: 7916195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Metabolite excretion by yeasts of the genus Candida in media lacking sources of N, P, S, or Mg and having different carbon sources].
    Mandeva RD; Ermakova IT; Lozinov AB
    Mikrobiologiia; 1981; 50(1):62-8. PubMed ID: 7219222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols.
    Martin AK
    Br J Nutr; 1982 Nov; 48(3):497-507. PubMed ID: 7171537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.
    Bastos AE; Moon DH; Rossi A; Trevors JT; Tsai SM
    Arch Microbiol; 2000 Nov; 174(5):346-52. PubMed ID: 11131025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon oivide.
    Kurtz AM; Crow SA
    Curr Microbiol; 1997 Sep; 35(3):165-8. PubMed ID: 9236299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence of Candida sp. 115 during hydrolysis of penicillin G and metabolism of phenylacetic acid.
    Deshpande BS; Ambedkar SS; Sudhakaran VK; Narayanan RA; Shewale JG
    Hindustan Antibiot Bull; 1989; 31(3-4):71-5. PubMed ID: 2486269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic formation and degradation of toxic aromatic compounds in agricultural and communal sewage deposits.
    Hofmann K; Hammer E
    Chemosphere; 1999 May; 38(11):2561-8. PubMed ID: 10204237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.
    Prieto MA; Díaz E; García JL
    J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid pools and metabolism during the cell division cycle of arginine-grown Candida utilis.
    Nurse P; Wiemken A
    J Bacteriol; 1974 Mar; 117(3):1108-16. PubMed ID: 4591945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between iron-limited growth and energy limitation during phased cultivation of Candida utilis.
    Thomas KC; Dawson PS
    Can J Microbiol; 1978 Apr; 24(4):440-7. PubMed ID: 565248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Metabolism of the methylotrophic yeasts Candida methylica].
    Bykovskaia SV; Trotsenko IuA
    Mikrobiologiia; 1980; 49(5):695-701. PubMed ID: 7442565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative determination of aromatic amino acids and related compounds in rumen fluid by high-performance liquid chromatography.
    Khan RI; Amin MR; Mohammed N; Onodera R
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 710(1-2):17-25. PubMed ID: 9686867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.