BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8765225)

  • 1. Stability studies on pig heart mitochondrial malate dehydrogenase: the effect of salts and amino acids.
    Jensen WA; Armstrong JM; De Giorgio J; Hearn MT
    Biochim Biophys Acta; 1996 Aug; 1296(1):23-34. PubMed ID: 8765225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of the stabilisation of pig heart mitochondrial malate dehydrogenase and maize leaf phosphoenolpyruvate carboxylase by different salts, amino acids and polyols.
    Jensen WA; Armstrong JM; De Giorgio J; Hearn MT
    Biochim Biophys Acta; 1997 Apr; 1338(2):186-98. PubMed ID: 9128136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase.
    Ebel C; Faou P; Kernel B; Zaccai G
    Biochemistry; 1999 Jul; 38(28):9039-47. PubMed ID: 10413477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro.
    Hartman DJ; Surin BP; Dixon NE; Hoogenraad NJ; Høj PB
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2276-80. PubMed ID: 8096339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of the thermal stabilities of two malate dehydrogenases by comparison of their three-dimensional structures.
    Duffield ML; Nicholls DJ; Atkinson T; Scawen MD
    J Mol Graph; 1994 Mar; 12(1):14-21, 34. PubMed ID: 8011596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability studies on maize leaf phosphoenolpyruvate carboxylase: the effect of salts.
    Jensen WA; Armstrong JM; De Giorgio J; Hearn MT
    Biochemistry; 1995 Jan; 34(2):472-80. PubMed ID: 7819239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of modification of lactate and malate dehydrogenases on their stability and activity].
    Markina VL; Eremin AN; Metelitsa DI
    Biofizika; 1990; 35(1):30-5. PubMed ID: 2346762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrameric malate dehydrogenase from a thermophilic Bacillus: cloning, sequence and overexpression of the gene encoding the enzyme and isolation and characterization of the recombinant enzyme.
    Wynne SA; Nicholls DJ; Scawen MD; Sundaram TK
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):235-45. PubMed ID: 8694770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilisation of halophilic malate dehydrogenase from Haloarcula marismortui by divalent cations -- effects of temperature, water isotope, cofactor and pH.
    Madern D; Zaccai G
    Eur J Biochem; 1997 Oct; 249(2):607-11. PubMed ID: 9370373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii.
    Madern D; Camacho M; Rodríguez-Arnedo A; Bonete MJ; Zaccai G
    Extremophiles; 2004 Oct; 8(5):377-84. PubMed ID: 15221656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the malate dehydrogenase of the propionic acid bacteria with the mammalian soluble and mitochondrial isoenzymes.
    Allen SH; Feldman HM
    Comp Biochem Physiol B; 1978; 60(3):287-93. PubMed ID: 318344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dye-affinity labelling of bovine heart mitochondrial malate dehydrogenase and study of the NADH-binding site.
    Labrou NE; Eliopoulos E; Clonis YD
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):687-93. PubMed ID: 8615848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the temperature on the MDH activity of cytosol and submitochondrial fractions of rat liver in different buffers.
    Kirkova M; Russanov E
    Acta Physiol Pharmacol Bulg; 1979; 5(4):57-62. PubMed ID: 44423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 23S rRNA assisted folding of cytoplasmic malate dehydrogenase is distinctly different from its self-folding.
    Sanyal SC; Pal S; Chowdhury S; DasGupta C
    Nucleic Acids Res; 2002 Jun; 30(11):2390-7. PubMed ID: 12034826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability of calf skin collagen type I in salt solutions.
    Komsa-Penkova R; Koynova R; Kostov G; Tenchov BG
    Biochim Biophys Acta; 1996 Oct; 1297(2):171-81. PubMed ID: 8917619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ionic environment on pig heart mitochondrial malate dehydrogenase.
    Place GA; Beynon RJ
    Int J Biochem; 1982; 14(4):305-9. PubMed ID: 7067909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media.
    Vazquez-Figueroa E; Yeh V; Broering JM; Chaparro-Riggers JF; Bommarius AS
    Protein Eng Des Sel; 2008 Nov; 21(11):673-80. PubMed ID: 18799474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization and thermostability of C. elegans cytoplasmic and mitochondrial malate dehydrogenases.
    Thomas MJ; Cassidy ER; Robinson DS; Walstrom KM
    Biochim Biophys Acta Proteins Proteom; 2022 Jan; 1870(1):140722. PubMed ID: 34619358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase.
    Trejo F; Gelpí JL; Ferrer A; Boronat A; Busquets M; Cortés A
    Protein Eng; 2001 Nov; 14(11):911-7. PubMed ID: 11742111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres.
    Lakshminarayanaiah N; Rojas E
    J Physiol; 1973 Sep; 233(3):613-34. PubMed ID: 4754874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.