BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8765237)

  • 1. Probing the substrate specificity for lipases. A CoMFA approach for predicting the hydrolysis rates of 2-arylpropionic esters catalyzed by Candida rugosa lipase.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1996 Aug; 1296(1):121-6. PubMed ID: 8765237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.
    Redondo O; Herrero A; Bello JF; Roig MG; Calvo MV; Plou FJ; Burguillo FJ
    Biochim Biophys Acta; 1995 Jan; 1243(1):15-24. PubMed ID: 7827103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters.
    Engström K; Nyhlén J; Sandström AG; Bäckvall JE
    J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of lipase-catalyzed hydrolysis of some monoterpene esters.
    Chatterjee T; Chatterjee BK; Bhattacharyya DK
    Can J Microbiol; 2001 May; 47(5):397-403. PubMed ID: 11400729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase.
    Manetti F; Mileto D; Corelli F; Soro S; Palocci C; Cernia E; D'Acquarica I; Lotti M; Alberghina L; Botta M
    Biochim Biophys Acta; 2000 Nov; 1543(1):146-58. PubMed ID: 11087950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa.
    Tenkanen M; Kontkanen H; Isoniemi R; Spetz P; Holmbom B
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):120-7. PubMed ID: 12382052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters.
    Ehlert J; Kronemann J; Zumbrägel N; Preller M
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31771200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of optically active vicinal fluorohydrins by lipase-catalyzed deracemization.
    Wölker D; Haufe G
    J Org Chem; 2002 May; 67(9):3015-21. PubMed ID: 11975561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a lipase-catalyzed kinetic resolution by chiral normal-phase liquid chromatography.
    Löwendahl C; Allenmark S
    Biomed Chromatogr; 1997; 11(5):289-95. PubMed ID: 9376711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of lipase-catalysed hydrolysis of naproxen methyl ester: use of NMR spectroscopy methods to study substrate-enzyme interaction.
    Cernia E; Delfini M; Di Cocco E; Palocci C; Soro S
    Bioorg Chem; 2002 Aug; 30(4):276-84. PubMed ID: 12392706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic resolution to (-)-ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase.
    Lehmann SV; Breinholt J; Bury PS; Nielsen TE
    Chirality; 2000 Jul; 12(7):568-73. PubMed ID: 10861957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives.
    Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML
    Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.