These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8765237)

  • 61. Substrate conformations set the rate of enzymatic acrylation by lipases.
    Syrén PO; Hult K
    Chembiochem; 2010 Apr; 11(6):802-10. PubMed ID: 20301160
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thermal stability enhancements of Candida rugosa lipase in ionic liquids.
    Fráter T; Ulbert O; Bélafi-Bakó K; Gubicza L
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):293-6. PubMed ID: 15296180
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regio-selective lipase catalyzed hydrolysis of oxanorbornane-based sugar-like amphiphiles at air-water interface: A polarized FT-IRRAS study.
    Sarangi NK; Ganesan M; Muraleedharan KM; Patnaik A
    Chem Phys Lipids; 2017 Apr; 204():25-33. PubMed ID: 28235449
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters.
    Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH
    J Agric Food Chem; 2003 Jul; 51(15):4349-55. PubMed ID: 12848509
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases.
    Otero C; Pastor E; Fernández VM; Ballesteros A
    Appl Biochem Biotechnol; 1990 Mar; 23(3):237-47. PubMed ID: 2350171
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles.
    Ozyilmaz E; Bayrakci M; Yilmaz M
    Bioorg Chem; 2016 Apr; 65():1-8. PubMed ID: 26698535
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lipase-catalyzed chemo- and enantioselective acetylation of 2-alkyl/aryl-3-hydroxypropiophenones.
    Kumar R; Azim A; Kumar V; Sharma SK; Prasad AK; Howarth OW; Olsen CE; Jain SC; Parmar VS
    Bioorg Med Chem; 2001 Oct; 9(10):2643-52. PubMed ID: 11557352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Study of microwave effects on the lipase-catalyzed hydrolysis.
    Chen CC; Reddy PM; Devi CS; Chang PC; Ho YP
    Enzyme Microb Technol; 2016 Jan; 82():164-172. PubMed ID: 26672464
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase.
    Sampath C; Belur PD; Iyyasami R
    Enzyme Microb Technol; 2018 Mar; 110():20-29. PubMed ID: 29310852
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functioning and regioselectivity of the lipase of Candida parapsilosis (Ashford) Langeron and Talice in aqueous medium. New interpretation of regioselectivity taking acyl migration into account.
    Briand D; Dubreucq E; Galzy P
    Eur J Biochem; 1995 Feb; 228(1):169-75. PubMed ID: 7883000
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure.
    Lyberg AM; Adlercreutz P
    Biochim Biophys Acta; 2008 Feb; 1784(2):343-50. PubMed ID: 18067872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426.
    Charton E; Macrae AR
    Biochim Biophys Acta; 1992 Jan; 1123(1):59-64. PubMed ID: 1730047
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lipases for biocatalysis: development of a chromatographic bioreactor.
    Calleri E; Temporini C; Furlanetto S; Loiodice F; Fracchiolla G; Massolini G
    J Pharm Biomed Anal; 2003 Aug; 32(4-5):715-24. PubMed ID: 12899962
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shifting-Nitroxides to Investigate Enzymatic Hydrolysis of Fatty Acids by Lipases Using Electron Paramagnetic Resonance in Turbid Media.
    Audran G; Jacoutot S; Jugniot N; Marque SRA; Mellet P
    Anal Chem; 2019 May; 91(9):5504-5507. PubMed ID: 31013060
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.
    Chang SW; Huang M; Hsieh YH; Luo YT; Wu TT; Tsai CW; Chen CS; Shaw JF
    Food Chem; 2014 Jul; 155():140-5. PubMed ID: 24594166
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters.
    Zheng MM; Lu Y; Dong L; Guo PM; Deng QC; Li WL; Feng YQ; Huang FH
    Bioresour Technol; 2012 Jul; 115():141-6. PubMed ID: 22209442
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium.
    Gautam R; Bassi AS; Yanful EK
    Biotechnol Lett; 2007 Jul; 29(7):1081-6. PubMed ID: 17450322
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lipase-catalyzed reactions in organic media: competition and applications.
    Deleuze H; Langrand G; Millet H; Baratti J; Buono G; Triantaphylides C
    Biochim Biophys Acta; 1987 Jan; 911(1):117-20. PubMed ID: 3790594
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The esterase profile of a lipase from Candida cylindracea.
    Brahimi-Horn MC; Guglielmino ML; Elling L; Sparrow LG
    Biochim Biophys Acta; 1990 Jan; 1042(1):51-4. PubMed ID: 2297523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.