These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8765237)

  • 81. A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol.
    Léonard V; Fransson L; Lamare S; Hult K; Graber M
    Chembiochem; 2007 Apr; 8(6):662-7. PubMed ID: 17328021
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enantioselective synthesis of (S)-ibuprofen ester prodrug in cyclohexane by Candida rugosa lipase immobilized on Accurel MP1000.
    Chen JC; Tsai SW
    Biotechnol Prog; 2000; 16(6):986-92. PubMed ID: 11101325
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A model of the pressure dependence of the enantioselectivity of Candida rugosalipase towards (+/-)-menthol.
    Kahlow UH; Schmid RD; Pleiss J
    Protein Sci; 2001 Oct; 10(10):1942-52. PubMed ID: 11567085
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review.
    Barriuso J; Vaquero ME; Prieto A; Martínez MJ
    Biotechnol Adv; 2016; 34(5):874-885. PubMed ID: 27188926
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of reductive alkylation of Candida rugosa lipase on its enantioselective esterification reaction.
    Basri M; Th'ng BL; Razak CN; Salleh AB
    Ann N Y Acad Sci; 1998 Dec; 864():192-7. PubMed ID: 9928091
    [No Abstract]   [Full Text] [Related]  

  • 86. Enantioselective aminolysis of an alpha-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass.
    Badjić JD; Kadnikova EN; Kostić NM
    Org Lett; 2001 Jun; 3(13):2025-8. PubMed ID: 11418040
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers.
    Hernáiz MJ; Rua M; Celda B; Medina P; Sinisterra JV; Sánchez-Montero JM
    Appl Biochem Biotechnol; 1994 Mar; 44(3):213-29. PubMed ID: 8198404
    [TBL] [Abstract][Full Text] [Related]  

  • 88. In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases.
    Samira N; Khedidja B; Zahra AF; Elyakine CKN; Mohamed Y
    Antiinflamm Antiallergy Agents Med Chem; 2020; 19(4):387-392. PubMed ID: 31518226
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Novel lipase-catalysed highly selective acetylation studies on D-arabino- and D-threo-polyhydroxyalkyltriazoles.
    Prasad AK; Himanshu ; Bhattacharya A; Olsen CE; Parmar VS
    Bioorg Med Chem; 2002 Apr; 10(4):947-51. PubMed ID: 11836103
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking.
    Juhl PB; Trodler P; Tyagi S; Pleiss J
    BMC Struct Biol; 2009 Jun; 9():39. PubMed ID: 19493341
    [TBL] [Abstract][Full Text] [Related]  

  • 91. LCD-based detection of enzymatic action.
    Hoogboom J; Velonia K; Rasing T; Rowan AE; Nolte RJ
    Chem Commun (Camb); 2006 Jan; (4):434-5. PubMed ID: 16493827
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Lipase-catalyzed enantioselective transesterification of cyanohydrins for the synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate.
    Zhu Y; Yang LR; Zhu ZQ; Yao S; Cen P
    Ann N Y Acad Sci; 1998 Dec; 864():646-8. PubMed ID: 9928153
    [No Abstract]   [Full Text] [Related]  

  • 93. Efficient synthesis of cyano-containing multi-substituted indoles catalyzed by lipase.
    Li F; Xu Y; Wang C; Wang C; Zhao R; Wang L
    Bioorg Chem; 2021 Feb; 107():104583. PubMed ID: 33421956
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Lipase-assisted generation of 2-methyl-3-furanthiol and 2-furfurylthiol from thioacetates.
    Bel Rhlid R; Matthey-Doret W; Blank I; Fay LB; Juillerat MA
    J Agric Food Chem; 2002 Jul; 50(14):4087-90. PubMed ID: 12083888
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evaluation of guanylhydrazone derivatives as inhibitors of Candida rugosa digestive lipase: Biological, biophysical, theoretical studies and biotechnological application.
    Santana CC; Silva-Júnior EF; Santos JCN; Rodrigues ÉEDS; da Silva IM; Araújo-Júnior JX; do Nascimento TG; Oliveira Barbosa LA; Dornelas CB; Figueiredo IM; Santos JCC; Grillo LAM
    Bioorg Chem; 2019 Jun; 87():169-180. PubMed ID: 30889500
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions.
    Wilk M; Brodzka A; Koszelewski D; Madej A; Paprocki D; Żądło-Dobrowolska A; Ostaszewski R
    Bioorg Chem; 2019 Dec; 93():102817. PubMed ID: 30824123
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enzymatic hydrolysis of organic-core microcapsules to produce aqueous-core microcapsules.
    Breguet V; Vojinovic V; Von Stockar U; Marison IW
    J Microencapsul; 2008 May; 25(3):179-86. PubMed ID: 18382924
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effect of fermentation conditions in the enzymatic activity and stereoselectivity of crude lipase from Candida rugosa.
    Sánchez A; De La Casa RM; Sinisterra JV; Valero F; Sánchez-Montero JM
    Appl Biochem Biotechnol; 1999 Apr; 80(1):65-75. PubMed ID: 15304677
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Chemo-enzymatic transformations in sensitive systems: lipase mediated hydrolysis of vancomycin esters.
    Adamczyk M; Grote J; Rege S
    Bioorg Med Chem Lett; 1998 Apr; 8(8):885-90. PubMed ID: 9871506
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Selective deacylation on the glucosyl moiety of octa-O-acetylsucrose by enzymic hydrolysis: formation of 2,1',3',4',6'-penta-O-acetylsucrose.
    Ong GT; Chang KY; Wu SH; Wang KT
    Carbohydr Res; 1993 Mar; 241():327-33. PubMed ID: 8472259
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.