BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8765241)

  • 1. Cisplatin nephrotoxicity: inhibition of gamma-glutamyl transpeptidase blocks the nephrotoxicity of cisplatin without reducing platinum concentrations in the kidney.
    Hanigan MH; Gallagher BC; Taylor PT
    Am J Obstet Gynecol; 1996 Aug; 175(2):270-3; discussion 273-4. PubMed ID: 8765241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice.
    Townsend DM; Hanigan MH
    J Pharmacol Exp Ther; 2002 Jan; 300(1):142-8. PubMed ID: 11752109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of gamma-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity.
    Hanigan MH; Gallagher BC; Taylor PT; Large MK
    Cancer Res; 1994 Nov; 54(22):5925-9. PubMed ID: 7954424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin.
    Hanigan MH; Lykissa ED; Townsend DM; Ou CN; Barrios R; Lieberman MW
    Am J Pathol; 2001 Nov; 159(5):1889-94. PubMed ID: 11696449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acivicin-induced alterations in renal and hepatic glutathione concentrations and in gamma-glutamyltransferase activities.
    Lantum HB; Iyer RA; Anders MW
    Biochem Pharmacol; 2004 Apr; 67(7):1421-6. PubMed ID: 15013858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of glutathione-induced protection from hyperbaric hyperoxia by acivicin.
    Peacock MD; Schenk DA; Lawrence RA; Morgan JA; Jenkinson SG
    J Appl Physiol (1985); 1994 Mar; 76(3):1279-84. PubMed ID: 7911799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the gamma-glutamyl cycle.
    Stern ST; Bruno MK; Horton RA; Hill DW; Roberts JC; Cohen SD
    Toxicol Appl Pharmacol; 2005 Jan; 202(2):160-71. PubMed ID: 15629191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of AT-125 on the nephrotoxicity of hexachloro-1,3-butadiene in rats.
    Davis ME
    Toxicol Appl Pharmacol; 1988 Aug; 95(1):44-52. PubMed ID: 2901150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase.
    Hausheer FH; Shanmugarajah D; Leverett BD; Chen X; Huang Q; Kochat H; Petluru PN; Parker AR
    Cancer Chemother Pharmacol; 2010 Apr; 65(5):941-51. PubMed ID: 19714332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gamma-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture.
    Dringen R; Kranich O; Hamprecht B
    Neurochem Res; 1997 Jun; 22(6):727-33. PubMed ID: 9178957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):289-98. PubMed ID: 7785056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna.
    DeWoskin RS; Riviere JE
    Toxicol Appl Pharmacol; 1992 Feb; 112(2):182-9. PubMed ID: 1311464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway.
    Wainford RD; Weaver RJ; Stewart KN; Brown P; Hawksworth GM
    Toxicology; 2008 Jul; 249(2-3):184-93. PubMed ID: 18583013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergothioneine mitigates cisplatin-evoked nephrotoxicity via targeting Nrf2, NF-κB, and apoptotic signaling and inhibiting γ-glutamyl transpeptidase.
    Salama SA; Abd-Allah GM; Mohamadin AM; Elshafey MM; Gad HS
    Life Sci; 2021 Aug; 278():119572. PubMed ID: 33964294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo nephrotoxic action of an isomeric mixture of S-(1-phenyl-2-hydroxyethyl)glutathione and S-(2-phenyl-2-hydroxyethyl)glutathione in Fischer-344 rats.
    Chakrabarti S; Malick MA
    Toxicology; 1991 Mar; 67(1):15-27. PubMed ID: 1673268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the protective effect of chloride salts on cisplatin nephrotoxicity.
    Daley-Yates PT; McBrien DC
    Biochem Pharmacol; 1985 Jul; 34(13):2363-9. PubMed ID: 4040367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the diuretics mannitol or acetazolamide on nephrotoxicity and physiological disposition of cisplatin in rats.
    Osman NM; Copley MP; Litterst CL
    Cancer Chemother Pharmacol; 1984; 13(1):58-62. PubMed ID: 6428763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of methylprednisolone on platinum kinetics and urinary enzyme excretion following intravenous cisplatin in vivo and on the growth inhibition of LLC-PK1 cells by cisplatin in vitro.
    Uozumi J; Koikawa Y; Yasumasu T; Tokuda N; Ueda T; Kumazawa J
    Res Exp Med (Berl); 1996; 196(4):211-7. PubMed ID: 8903096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net efflux of cysteine, glutathione and related metabolites from rat hippocampal slices during oxygen/glucose deprivation: dependence on gamma-glutamyl transpeptidase.
    Li X; Wallin C; Weber SG; Sandberg M
    Brain Res; 1999 Jan; 815(1):81-8. PubMed ID: 9974125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in vivo disposition of 2-bromo-[14C]hydroquinone and the effect of gamma-glutamyl transpeptidase inhibition.
    Lau SS; Monks TJ
    Toxicol Appl Pharmacol; 1990 Mar; 103(1):121-32. PubMed ID: 1969181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.