BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8765519)

  • 1. Mechanistic studies on the inactivation of papain by epoxysuccinyl inhibitors.
    Meara JP; Rich DH
    J Med Chem; 1996 Aug; 39(17):3357-66. PubMed ID: 8765519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of cysteine proteases.
    Govardhan CP; Abeles RH
    Arch Biochem Biophys; 1996 Jun; 330(1):110-4. PubMed ID: 8651683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New peptidic cysteine protease inhibitors derived from the electrophilic alpha-amino acid aziridine-2,3-dicarboxylic acid.
    Schirmeister T
    J Med Chem; 1999 Feb; 42(4):560-72. PubMed ID: 10052963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidyl epoxides extended in the P' direction as cysteine protease inhibitors: effect on affinity and mechanism of inhibition.
    Perlman N; Hazan M; Shokhen M; Albeck A
    Bioorg Med Chem; 2008 Oct; 16(19):9032-9. PubMed ID: 18789705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases.
    Sadaghiani AM; Verhelst SH; Gocheva V; Hill K; Majerova E; Stinson S; Joyce JA; Bogyo M
    Chem Biol; 2007 May; 14(5):499-511. PubMed ID: 17524981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of cysteine proteases by peptidyl epoxides: characterization of the alkylation sites on the enzyme and the inactivator.
    Albeck A; Kliper S
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):71-6. PubMed ID: 10657241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-phase methods for the preparation of epoxysuccinate-based inhibitors of cysteine proteases.
    Sadaghiani AM; Verhelst SH; Bogyo M
    J Comb Chem; 2006; 8(6):802-4. PubMed ID: 17096566
    [No Abstract]   [Full Text] [Related]  

  • 8. Further evidence for the importance of free carboxylate in epoxysuccinate inhibitors of thiol proteases.
    Bihovsky R; Powers JC; Kam CM; Walton R; Loewi RC
    J Enzyme Inhib; 1993; 7(1):15-25. PubMed ID: 7510790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azapeptides as inhibitors and active site titrants for cysteine proteinases.
    Xing R; Hanzlik RP
    J Med Chem; 1998 Apr; 41(8):1344-51. PubMed ID: 9548822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent inhibitors of cysteine proteases from the marine fungus Microascus longirostris.
    Yu CM; Curtis JM; Walter JA; Wright JL; Ayer SW; Kaleta J; Querengesser L; Fathi-Afshar ZR
    J Antibiot (Tokyo); 1996 Apr; 49(4):395-7. PubMed ID: 8642005
    [No Abstract]   [Full Text] [Related]  

  • 11. Aza-peptide epoxides: a new class of inhibitors selective for clan CD cysteine proteases.
    Asgian JL; James KE; Li ZZ; Carter W; Barrett AJ; Mikolajczyk J; Salvesen GS; Powers JC
    J Med Chem; 2002 Nov; 45(23):4958-60. PubMed ID: 12408706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes.
    Watanabe D; Yamamoto A; Tomoo K; Matsumoto K; Murata M; Kitamura K; Ishida T
    J Mol Biol; 2006 Oct; 362(5):979-93. PubMed ID: 16950396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain-CLIK148 complex.
    Tsuge H; Nishimura T; Tada Y; Asao T; Turk D; Turk V; Katunuma N
    Biochem Biophys Res Commun; 1999 Dec; 266(2):411-6. PubMed ID: 10600517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity?
    Czaplewski C; Grzonka Z; Jaskólski M; Kasprzykowski F; Kozak M; Politowska E; Ciarkowski J
    Biochim Biophys Acta; 1999 May; 1431(2):290-305. PubMed ID: 10350606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntheses and SH-enzyme inhibitory activities of new epoxysuccinic acid piperazine derivatives against mu-calpain and cathepsin B.
    Inoue J; Yoshida Y; Nakamura M; Cui YS; Nagao Y
    Drug Des Discov; 1999 Aug; 16(2):165-9. PubMed ID: 10533812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eta(1)-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain.
    Rudolf B; Salmain M; Martel A; Palusiak M; Zakrzewski J
    J Inorg Biochem; 2009 Aug; 103(8):1162-8. PubMed ID: 19616302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of Val-157 hydrophobic interaction for papain inhibitory activity of an epoxysuccinyl amino acid derivative. A structure-activity relationship based on the crystal structure of the papain-E-64-c complex.
    Yamamoto D; Matsumoto K; Ohishi H; Ishida T; Inoue M; Kitamura K; Hanada K
    FEBS Lett; 1990 Apr; 263(1):134-6. PubMed ID: 2332044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of chloromethyl sulfoxides as a new class of selective irreversible cysteine protease inhibitors.
    Brouwer AJ; Bunschoten A; Liskamp RM
    Bioorg Med Chem; 2007 Nov; 15(22):6985-93. PubMed ID: 17869119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of cysteine proteases by peptides containing aziridine-2,3-dicarboxylic acid building blocks.
    Schirmeister T
    Biopolymers; 1999; 51(1):87-97. PubMed ID: 10380356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.