BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8766693)

  • 1. Shear field mapping in actin networks by using magnetic tweezers.
    Schmidt FG; Ziemann F; Sackmann E
    Eur Biophys J; 1996; 24(5):348-53. PubMed ID: 8766693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers.
    Bausch AR; Möller W; Sackmann E
    Biophys J; 1999 Jan; 76(1 Pt 1):573-9. PubMed ID: 9876170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer.
    Ziemann F; Rädler J; Sackmann E
    Biophys J; 1994 Jun; 66(6):2210-6. PubMed ID: 8075354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microrheology of microtubule solutions and actin-microtubule composite networks.
    Pelletier V; Gal N; Fournier P; Kilfoil ML
    Phys Rev Lett; 2009 May; 102(18):188303. PubMed ID: 19518917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusing wave spectroscopy microrheology of actin filament networks.
    Palmer A; Xu J; Kuo SC; Wirtz D
    Biophys J; 1999 Feb; 76(2):1063-71. PubMed ID: 9916038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers.
    Feneberg W; Aepfelbacher M; Sackmann E
    Biophys J; 2004 Aug; 87(2):1338-50. PubMed ID: 15298936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of viscoelastic properties of crosslinked actin networks.
    Kim T; Hwang W; Lee H; Kamm RD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000439. PubMed ID: 19609348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method.
    Wagner O; Zinke J; Dancker P; Grill W; Bereiter-Hahn J
    Biophys J; 1999 May; 76(5):2784-96. PubMed ID: 10233094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network.
    Tang JX; Janmey PA; Stossel TP; Ito T
    Biophys J; 1999 Apr; 76(4):2208-15. PubMed ID: 10096915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.
    Gong X; Hua L; Wu C; Ngai T
    Rev Sci Instrum; 2013 Mar; 84(3):033702. PubMed ID: 23556822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical properties of actin gels. Elastic modulus and filament motions.
    Janmey PA; Hvidt S; Käs J; Lerche D; Maggs A; Sackmann E; Schliwa M; Stossel TP
    J Biol Chem; 1994 Dec; 269(51):32503-13. PubMed ID: 7798252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive and active microrheology for cross-linked F-actin networks in vitro.
    Lee H; Ferrer JM; Nakamura F; Lang MJ; Kamm RD
    Acta Biomater; 2010 Apr; 6(4):1207-18. PubMed ID: 19883801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels.
    Liu J; Koenderink GH; Kasza KE; Mackintosh FC; Weitz DA
    Phys Rev Lett; 2007 May; 98(19):198304. PubMed ID: 17677669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins.
    Janssen KP; Eichinger L; Janmey PA; Noegel AA; Schliwa M; Witke W; Schleicher M
    Arch Biochem Biophys; 1996 Jan; 325(2):183-9. PubMed ID: 8561496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microviscoelastic moduli of biomimetic cell envelopes.
    Limozin L; Roth A; Sackmann E
    Phys Rev Lett; 2005 Oct; 95(17):178101. PubMed ID: 16383873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links.
    Lieleg O; Schmoller KM; Claessens MM; Bausch AR
    Biophys J; 2009 Jun; 96(11):4725-32. PubMed ID: 19486695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A torsion pendulum for measurement of the viscoelasticity of biopolymers and its application to actin networks.
    Janmey PA
    J Biochem Biophys Methods; 1991 Jan; 22(1):41-53. PubMed ID: 2005359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers.
    Wei X; Fang C; Gong B; Yao J; Qian J; Lin Y
    Soft Matter; 2021 Nov; 17(45):10177-10185. PubMed ID: 33646227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.