BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8766693)

  • 21. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.
    Mahaffy RE; Shih CK; MacKintosh FC; Käs J
    Phys Rev Lett; 2000 Jul; 85(4):880-3. PubMed ID: 10991422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin.
    Leterrier JF; Käs J; Hartwig J; Vegners R; Janmey PA
    J Biol Chem; 1996 Jun; 271(26):15687-94. PubMed ID: 8663092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheology of two-dimensional F-actin networks associated with a lipid interface.
    Walder R; Levine AJ; Dennin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011909. PubMed ID: 18351878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology of semiflexible bundle networks with transient linkers.
    Müller KW; Bruinsma RF; Lieleg O; Bausch AR; Wall WA; Levine AJ
    Phys Rev Lett; 2014 Jun; 112(23):238102. PubMed ID: 24972229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
    Janmey PA; Euteneuer U; Traub P; Schliwa M
    J Cell Biol; 1991 Apr; 113(1):155-60. PubMed ID: 2007620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osmotic force-controlled microrheometry of entangled actin networks.
    Uhde J; Feneberg W; Ter-Oganessian N; Sackmann E; Boulbitch A
    Phys Rev Lett; 2005 May; 94(19):198102. PubMed ID: 16090216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-linker dynamics determine the mechanical properties of actin gels.
    Wachsstock DH; Schwarz WH; Pollard TD
    Biophys J; 1994 Mar; 66(3 Pt 1):801-9. PubMed ID: 8011912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-linking molecules modify composite actin networks independently.
    Schmoller KM; Lieleg O; Bausch AR
    Phys Rev Lett; 2008 Sep; 101(11):118102. PubMed ID: 18851335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microrheometry underestimates the values of the viscoelastic moduli in measurements on F-actin solutions compared to macrorheometry.
    Schmidt FG; Hinner B; Sackmann E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5646-53. PubMed ID: 11031621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells.
    Cordes A; Witt H; Gallemí-Pérez A; Brückner B; Grimm F; Vache M; Oswald T; Bodenschatz J; Flormann D; Lautenschläger F; Tarantola M; Janshoff A
    Phys Rev Lett; 2020 Aug; 125(6):068101. PubMed ID: 32845697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent beads disintegrate actin networks.
    Golde T; Schuldt C; Schnauß J; Strehle D; Glaser M; Käs J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):044601. PubMed ID: 24229308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks.
    He J; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041902. PubMed ID: 21599198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow filament dynamics and viscoelasticity in entangled and active actin networks.
    Keller M; Tharmann R; Dichtl MA; Bausch AR; Sackmann E
    Philos Trans A Math Phys Eng Sci; 2003 Apr; 361(1805):699-711; discussion 711-2. PubMed ID: 12871619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive Response of Actin Bundles under Mechanical Stress.
    Rückerl F; Lenz M; Betz T; Manzi J; Martiel JL; Safouane M; Paterski-Boujemaa R; Blanchoin L; Sykes C
    Biophys J; 2017 Sep; 113(5):1072-1079. PubMed ID: 28877490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface.
    Allan DB; Firester DM; Allard VP; Reich DH; Stebe KJ; Leheny RL
    Soft Matter; 2014 Sep; 10(36):7051-60. PubMed ID: 24969505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of branching on the elasticity of actin networks.
    Pujol T; du Roure O; Fermigier M; Heuvingh J
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10364-9. PubMed ID: 22689953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dictyostelium cells' cytoplasm as an active viscoplastic body.
    Feneberg W; Westphal M; Sackmann E
    Eur Biophys J; 2001 Aug; 30(4):284-94. PubMed ID: 11548131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Features and Nonlinear Rheology of Self-Assembled Networks of Cross-Linked Semiflexible Polymers.
    Syed S; MacKintosh FC; Shivers JL
    J Phys Chem B; 2022 Dec; 126(50):10741-10749. PubMed ID: 36475770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelasticity of entangled actin networks studied by long-pulse magnetic bead microrheometry.
    Uhde J; Ter-Oganessian N; Pink DA; Sackmann E; Boulbitch A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061916. PubMed ID: 16485983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.