These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8766728)

  • 1. Attempted induction of reductive acetogenesis into the rumen fermentation in vitro.
    Demeyer DI; Fiedler D; De Graeve KG
    Reprod Nutr Dev; 1996; 36(3):233-40. PubMed ID: 8766728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attempts to induce reductive acetogenesis into a sheep rumen.
    Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L
    Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of porcine bile acids on methane production by rumen contents in vitro.
    Immig I
    Arch Tierernahr; 1998; 51(1):21-6. PubMed ID: 9638302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for reductive acetogenesis and its nutritional significance in ostrich hindgut as estimated from in vitro incubations.
    Fievez V; Mbanzamihigo L; Piattoni F; Demeyer D
    J Anim Physiol Anim Nutr (Berl); 2001 Oct; 85(9-10):271-80. PubMed ID: 11686800
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of monensin on total volatile fatty acid production by steers fed a high grain diet.
    Shell LA; Hale WH; Theurer B; Swingle RS
    J Anim Sci; 1983 Jul; 57(1):178-85. PubMed ID: 6885658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of cottonseed and other feedstuffs in cattle rumen fluid.
    Schneider IC; Ames ML; Rasmussen MA; Reilly PJ
    J Agric Food Chem; 2002 Apr; 50(8):2267-73. PubMed ID: 11929282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics.
    Armentano LE; Young JW
    J Nutr; 1983 Jun; 113(6):1265-77. PubMed ID: 6406652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum.
    Fox JT; Drouillard JS; Shi X; Nagaraja TG
    J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary study of the effects of condensed barley distillers soluble on rumen fermentation and plasma metabolites in Japanese Black cows.
    Tsuruoka K; Kanamaru H; Takahashi H; Gotoh T
    Anim Sci J; 2017 Apr; 88(4):610-617. PubMed ID: 27530452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the method of forage conservation on feeding behaviour, intake and characteristics of reticulo-rumen content, in sheep fed ad libitum.
    Chiofalo V; Dulphy JP; Baumont R
    Reprod Nutr Dev; 1992; 32(4):377-92. PubMed ID: 1418399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A relationship between the molar proportion of propionic acid and the clearance rate of the liquid phase in the rumen of the sheep.
    Hodgson JC; Thomas PC
    Br J Nutr; 1975 May; 33(3):447-56. PubMed ID: 235941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora.
    De Graeve KG; Grivet JP; Durand M; Beaumatin P; Cordelet C; Hannequart G; Demeyer D
    J Appl Bacteriol; 1994 Jan; 76(1):55-61. PubMed ID: 8144406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Aspergillus oryzae fermentation extract on in vitro equine cecal fermentation.
    McDaniel AL; Martin SA; McCann JS; Parks AH
    J Anim Sci; 1993 Aug; 71(8):2164-72. PubMed ID: 8376241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of grazing steers as related to volatile fatty acid production after different lengths of in vitro fermentation.
    Barth KM; Shumway PE; Kazzal NT; Davis DI
    J Anim Sci; 1972 Apr; 34(4):636-41. PubMed ID: 5018017
    [No Abstract]   [Full Text] [Related]  

  • 16. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis.
    Le Van TD; Robinson JA; Ralph J; Greening RC; Smolenski WJ; Leedle JA; Schaefer DM
    Appl Environ Microbiol; 1998 Sep; 64(9):3429-36. PubMed ID: 9726893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows.
    Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J
    J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters.
    Omidi-Mirzaei H; Azarfar A; Mirzaei M; Kiani A; Ghaffari MH
    J Dairy Sci; 2018 May; 101(5):4143-4157. PubMed ID: 29477531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruminal VFA production with steers fed whole or ground corn grain.
    Sharp WM; Johnson RR; Owens FN
    J Anim Sci; 1982 Dec; 55(6):1505-14. PubMed ID: 7161218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the effects on the fermentation pattern in the rumen of the addition of various sources and levels of the lower volatile fatty acids.
    Griffiths TW
    J Sci Food Agric; 1971 Nov; 22(11):592-5. PubMed ID: 5139814
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.