These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8767053)

  • 41. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions.
    Whitelaw FG; Eadie JM; Bruce LA; Shand WJ
    Br J Nutr; 1984 Sep; 52(2):261-75. PubMed ID: 6433970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of monensin on fermentation of hay and wheat bran investigated by the Rumen Simulation Technique (Rusitec). 2. End-products of fermentation and protein synthesis.
    Jalc D; Baran M; Vendrák T; Siroka P
    Arch Tierernahr; 1992; 42(2):153-8. PubMed ID: 1338406
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gas and short-chain fatty acid production from feeds commonly fed to red deer (Cervus elaphus L.) and incubated with rumen inoculum from red deer and sheep.
    Lavrenčič A; Veternik D
    J Anim Physiol Anim Nutr (Berl); 2018 Oct; 102(5):1146-1153. PubMed ID: 29978922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability.
    Al-Sagheer AA; Elwakeel EA; Ahmed MG; Sallam SMA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31450-31458. PubMed ID: 30203345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet.
    Giraldo LA; Tejido ML; Ranilla MJ; Ramos S; Carro MD
    J Anim Sci; 2008 Jul; 86(7):1617-23. PubMed ID: 18344313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Influence of thiamine on bacterial proteosynthesis in sheep].
    Candau M; Kone L
    Reprod Nutr Dev (1980); 1980; 20(5B):1695-9. PubMed ID: 7349505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Volatile fatty acids in the rumen of sheep fed a synthetic diet].
    Baran M; Bod'a K; Jalc D; Piatková M; Kalacnjuk GI; Várady J
    Vet Med (Praha); 1983 Aug; 28(8):493-501. PubMed ID: 6414150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of Prevotella bryantii 3C5 for modulation of the ruminal environment in an ovine model.
    Fraga M; Fernández S; Perelmuter K; Pomiés N; Cajarville C; Zunino P
    Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):101-106. PubMed ID: 30181051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Feeding frequency for lactating cows: effects on rumen fermentation and blood metabolites and hormones.
    Sutton JD; Hart IC; Broster WH; Elliott RJ; Schuller E
    Br J Nutr; 1986 Jul; 56(1):181-92. PubMed ID: 3314980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of time at suboptimal pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Dairy Sci; 2007 Mar; 90(3):1486-92. PubMed ID: 17297122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of Rhaponticum carthamoides Wild on the growth of ruminal bacteria in vitro and on fermentation in an artificial rumen (Rusitec).
    Selepcová L; Jalc D; Javorský P; Baran M
    Arch Tierernahr; 1993; 43(2):147-56. PubMed ID: 8390234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters.
    Mi J; Zhou J; Huang X; Long R
    PLoS One; 2017; 12(1):e0170044. PubMed ID: 28076447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The effect of monensin on the fermentation of feed with different proportions of hay and concentrate in an artificial rumen (rumen simulation technic)].
    Jalc D; Baran M; Vendrák T; Siroka P
    Vet Med (Praha); 1991 Jan; 36(1):29-38. PubMed ID: 1926680
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of the addition of malate on in vitro rumen fermentation of cereal grains.
    Carro MD; Ranilla MJ
    Br J Nutr; 2003 Feb; 89(2):181-8. PubMed ID: 12575902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows.
    Morvay Y; Bannink A; France J; Kebreab E; Dijkstra J
    J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (Rusitec).
    Wallace RJ; Czerkawski JW; Breckenridge G
    Br J Nutr; 1981 Jul; 46(1):131-48. PubMed ID: 7020749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture.
    Hafla AN; Soder KJ; Brito AF; Rubano MD; Dell CJ
    J Dairy Sci; 2014 Dec; 97(12):7856-69. PubMed ID: 25262180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of changing forage on the dynamic variation in rumen fermentation in sheep.
    Xie X; Wang JK; Guan L; Liu JX
    Anim Sci J; 2018 Jan; 89(1):122-131. PubMed ID: 28944530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.