These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8768220)

  • 1. Growth of necrotic tumors in the presence and absence of inhibitors.
    Byrne HM; Chaplin MA
    Math Biosci; 1996 Jul; 135(2):187-216. PubMed ID: 8768220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of nonnecrotic tumors in the presence and absence of inhibitors.
    Byrne HM; Chaplain MA
    Math Biosci; 1995 Dec; 130(2):151-81. PubMed ID: 8527869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state analysis of necrotic core formation for solid avascular tumors with time delays in regulatory apoptosis.
    Zhang F; Xu S
    Comput Math Methods Med; 2014; 2014():467158. PubMed ID: 25667597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new mathematical model for avascular tumour growth.
    Sherratt JA; Chaplain MA
    J Math Biol; 2001 Oct; 43(4):291-312. PubMed ID: 12120870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton.
    Dormann S; Deutsch A
    In Silico Biol; 2002; 2(3):393-406. PubMed ID: 12542422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical models of tumor growth. IV. Effects of a necrotic core.
    Adam JA; Maggelakis SA
    Math Biosci; 1989 Nov; 97(1):121-36. PubMed ID: 2520203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of time delays on the dynamics of avascular tumor growth.
    Byrne HM
    Math Biosci; 1997 Sep; 144(2):83-117. PubMed ID: 9258002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a mathematical model for the growth of tumors under the action of external inhibitors.
    Cui S
    J Math Biol; 2002 May; 44(5):395-426. PubMed ID: 12021982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the formation of necrotic regions in avascular tumours.
    Tindall MJ; Please CP; Peddie MJ
    Math Biosci; 2008 Jan; 211(1):34-55. PubMed ID: 18082225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion regulated growth characteristics of a spherical prevascular carcinoma.
    Adam JA; Maggelakis SA
    Bull Math Biol; 1990; 52(4):549-82. PubMed ID: 2397329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium model of a vascularized spherical carcinoma with central necrosis--some properties of the solution.
    Adam JA; Noren RD
    J Math Biol; 1993; 31(7):735-45. PubMed ID: 8245732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction-diffusion model for the growth of avascular tumor.
    Ferreira SC; Martins ML; Vilela MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021907. PubMed ID: 11863563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential equations with applications in cancer diseases.
    Ilea M; Turnea M; Rotariu M
    Rev Med Chir Soc Med Nat Iasi; 2013; 117(2):572-7. PubMed ID: 24340548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of drug resistance: heterogeneous tumors.
    Panetta JC
    Math Biosci; 1998 Jan; 147(1):41-61. PubMed ID: 9401351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific and non-specific inhibition of normal and tumor growth.
    Fremuth F
    Acta Univ Carol Med Monogr; 1984; 109():1-128. PubMed ID: 6537724
    [No Abstract]   [Full Text] [Related]  

  • 16. Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids.
    Lee SY; Jeong EK; Jeon HM; Kim CH; Kang HS
    Oncol Rep; 2010 Jul; 24(1):73-9. PubMed ID: 20514446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of avascular-tumour growth.
    Ward JP; King JR
    IMA J Math Appl Med Biol; 1997 Mar; 14(1):39-69. PubMed ID: 9080687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of optimal control theory in cancer chemotherapy.
    Swan GW
    Math Biosci; 1990 Oct; 101(2):237-84. PubMed ID: 2134485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumour dynamics and necrosis: surface tension and stability.
    Landman KA; Please CP
    IMA J Math Appl Med Biol; 2001 Jun; 18(2):131-58. PubMed ID: 11453466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the concentration profile of a growth inhibitory factor in multicell spheroids.
    Chaplain MA; Britton NF
    Math Biosci; 1993 Jun; 115(2):233-43. PubMed ID: 8507991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.