These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8768768)

  • 1. Neural network studies. 2. Variable selection.
    Tetko IV; Villa AE; Livingstone DJ
    J Chem Inf Comput Sci; 1996; 36(4):794-803. PubMed ID: 8768768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous).
    Hemmateenejad B; Akhond M; Miri R; Shamsipur M
    J Chem Inf Comput Sci; 2003; 43(4):1328-34. PubMed ID: 12870926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying the explanatory capacity of artificial neural networks for understanding environmental chemical quantitative structure-activity relationship models.
    Yang L; Wang P; Jiang Y; Chen J
    J Chem Inf Model; 2005; 45(6):1804-11. PubMed ID: 16309287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of receptor properties and binding affinity of ligands to benzodiazepine/GABAA receptors using artificial neural networks.
    Maddalena DJ; Johnston GA
    J Med Chem; 1995 Feb; 38(4):715-24. PubMed ID: 7861419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?
    Dobchev D; Karelson M
    Expert Opin Drug Discov; 2016 Jul; 11(7):627-39. PubMed ID: 27149299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume learning algorithm artificial neural networks for 3D QSAR studies.
    Tetko IV; Kovalishyn VV; Livingstone DJ
    J Med Chem; 2001 Jul; 44(15):2411-20. PubMed ID: 11448223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of linear and nonlinear QSAR data using neural networks.
    Manallack DT; Ellis DD; Livingstone DJ
    J Med Chem; 1994 Oct; 37(22):3758-67. PubMed ID: 7966135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of water-phosphatidylcholine membrane partition coefficient of some drugs from their molecular structures.
    Fatemi MH; Moghaddam MR
    Drug Chem Toxicol; 2012 Oct; 35(4):381-8. PubMed ID: 22288947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a pruning algorithm to optimize artificial neural networks for pharmaceutical fingerprinting.
    Tetko IV; Villa AE; Aksenova TI; Zielinski WL; Brower J; Collantes ER; Welsh WJ
    J Chem Inf Comput Sci; 1998; 38(4):660-8. PubMed ID: 9691475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Growing Neural Gas for applications with time constraint: optimal parameter estimation.
    García-Rodríguez J; Angelopoulou A; García-Chamizo JM; Psarrou A; Orts Escolano S; Morell Giménez V
    Neural Netw; 2012 Aug; 32():196-208. PubMed ID: 22386599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network based soft estimator for estimation of transducer static nonlinearity.
    Singh AP; Kamal TS; Kumar S
    Int J Neural Syst; 2004 Aug; 14(4):237-46. PubMed ID: 15372701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3beta inhibitory activities.
    Goodarzi M; Freitas MP; Jensen R
    J Chem Inf Model; 2009 Apr; 49(4):824-32. PubMed ID: 19338295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a principled methodology for neural network design and performance evaluation in QSAR. Application to the prediction of logP.
    Duprat AF; Huynh T; Dreyfus G
    J Chem Inf Comput Sci; 1998; 38(4):586-94. PubMed ID: 9691473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.