BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8768785)

  • 1. Analysis of the ATP/GTP binding site of casein kinase II by site-directed mutagenesis.
    Jakobi R; Traugh JA
    Physiol Chem Phys Med NMR; 1995; 27(4):293-301. PubMed ID: 8768785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis and structure/function studies of casein kinase II correlate stimulation of activity by the beta subunit with changes in conformation and ATP/GTP utilization.
    Jakobi R; Traugh JA
    Eur J Biochem; 1995 Jun; 230(3):1111-7. PubMed ID: 7601142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modes of regulation of casein kinase II.
    Jakobi R; Lin WJ; Traugh JA
    Cell Mol Biol Res; 1994; 40(5-6):421-9. PubMed ID: 7735316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the phosphotransferase domain of casein kinase II by site-directed mutagenesis and expression in Escherichia coli.
    Jakobi R; Traugh JA
    J Biol Chem; 1992 Nov; 267(33):23894-902. PubMed ID: 1331104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inclining the purine base binding plane in protein kinase CK2 by exchanging the flanking side-chains generates a preference for ATP as a cosubstrate.
    Yde CW; Ermakova I; Issinger OG; Niefind K
    J Mol Biol; 2005 Mar; 347(2):399-414. PubMed ID: 15740749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP.
    Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM
    Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase CK2 structure-function relationship: effects of the beta subunit on reconstitution and activity.
    Boldyreff B; Meggio F; Pinna LA; Issinger OG
    Cell Mol Biol Res; 1994; 40(5-6):391-9. PubMed ID: 7735313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTP plus water mimic ATP in the active site of protein kinase CK2.
    Niefind K; Pütter M; Guerra B; Issinger OG; Schomburg D
    Nat Struct Biol; 1999 Dec; 6(12):1100-3. PubMed ID: 10581548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit.
    Bidwai AP; Reed JC; Glover CV
    Arch Biochem Biophys; 1993 Jan; 300(1):265-70. PubMed ID: 8424662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic activity of mutants of yeast protein kinase CK2alpha.
    Sajnaga E; Kubiński K; Szyszka R
    Acta Biochim Pol; 2008; 55(4):767-76. PubMed ID: 19015772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution.
    Niefind K; Guerra B; Pinna LA; Issinger OG; Schomburg D
    EMBO J; 1998 May; 17(9):2451-62. PubMed ID: 9564028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase.
    Wu CC; Hsu TY; Chen JY
    Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase CK2: biphasic kinetics with peptide substrates.
    Tiganis T; House CM; Kemp BE
    Arch Biochem Biophys; 1996 Jan; 325(2):289-94. PubMed ID: 8561509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renaturation of casein kinase II from recombinant subunits produced in Escherichia coli: purification and characterization of the reconstituted holoenzyme.
    Lin WJ; Traugh JA
    Protein Expr Purif; 1993 Jun; 4(3):256-64. PubMed ID: 8390882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase.
    Joyce MA; Fraser ME; Brownie ER; James MN; Bridger WA; Wolodko WT
    Biochemistry; 1999 Jun; 38(22):7273-83. PubMed ID: 10353839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of the unusual catalytic preference for GDP/GTP in Entamoeba histolytica 3-phosphoglycerate kinase.
    Encalada R; Rojo-Domínguez A; Rodríguez-Zavala JS; Pardo JP; Quezada H; Moreno-Sánchez R; Saavedra E
    FEBS J; 2009 Apr; 276(7):2037-47. PubMed ID: 19292872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the residues of protein kinase CK2 implicated in substrate recognition: mutagenesis of conserved basic residues in the alpha-subunit.
    Sarno S; Boldyreff B; Marin O; Guerra B; Meggio F; Issinger OG; Pinna LA
    Biochem Biophys Res Commun; 1995 Jan; 206(1):171-9. PubMed ID: 7818517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase.
    Ahnert F; Schmid R; Altendorf K; Greie JC
    Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.
    Tapia JC; Bolanos-Garcia VM; Sayed M; Allende CC; Allende JE
    J Cell Biochem; 2004 Apr; 91(5):865-79. PubMed ID: 15034923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.